
COMPUTABILITY III
TOPICS IN COMPUTABILITY

ARISTOTELIS PANAGIOTOPOULOS

Intro

This is a topics course in computability. Among others we will cover:

• undecidability of the word problems for groups;
• quantifier elimination and decidable theories;
• computational complexity;
• dependence of P=NP from oracles;
• The Paris Harrington theorem and the independence of Ramsey theoretic

statements from Peano arithmetic;
• recursion theoretic forcing and undefinability of definability.

Time permitting we will also cover some basic effective descriptive set theory.

Contents

Intro 1
1. Some more examples of undecidable theories 2
2. The word problem 3
2.1. Intro 3
2.2. Semi-Thue processes and the word problem for semigroups 4
2.3. Thue processes 6
2.4. Parenthesis: origin constrain domino tilling problem 7
2.5. The word problem for groups 8
3. Decidable theories 14
3.1. Elimination of quantifiers 14
3.2. Model theoretic criteria for QE 17
3.3. Presburger arithmetic 21
4. Computational complexity of decision problems 23
4.1. More examples of NP-complete problems 26
4.2. Some polynomial time problems 30
4.3. Deciding Presburger arithmetic is exponential-hard 31
5. A closer look on complexity 35
5.1. The hierarchy theorem 35
5.2. Space and non-deterministic space complexity 36
5.3. P =? NP depends on oracles. 38

1

2 ARISTOTELIS PANAGIOTOPOULOS

6. A combinatorial sentence not provable from Peano arithmetic 41
6.1. The Ramsey theorem and the Paris-Harrington principle 41
6.2. Indiscernibles 42
6.3. Conclusion 46

1. Some more examples of undecidable theories

Recall our technique for showing that a theory T is undecidable: find a strongly
undecidable structure M with M |= T .

To show that an L-structure M is strongly undecidable it suffices to show that
some other strongly undecidable structureM′ in a possibly different finite language
L′ is definable in M (perhaps with parameters).

We have already established that N = (N, 0, S,+, ∗, <) is strongly undecidable
and that there is a strongly undecidable graph G = (V,E).

Let us remind the technique by using it to show that the theory of posets and that
the theory of lattices is undecidable. Recall that a poset is a structure P = (P,<)
where < is a binary relation so that

(1) P |= ∀x∀y∀z
(
(x < y ∧ y < z) =⇒ x < z

)
;

(2) P |= ∀x∀y (x < y =⇒ ¬(x = y ∨ y < x);

A poset is a lattice if every finite subset F of P has a unique least upper bound
and a greatest lower bound.

Theorem 1. There is a strongly undecidable lattice P = (P,<). As a consequence
the theory of posets and the theory of lattices is undecidable.

Proof. Let G = (V,E) be a strongly undecidable graph. We will define a lattice
P = (P,<) in which G is definable.

Let P be the set of all subsets A of V ∪ E with the property that

(a, b) ∈ A =⇒ a ∈ A, b ∈ A
Let also < be the inclusion, i.e., set A < B if and only if A (B. Notice that P
is closed under ∩,∪ and therefore it is a lattice. In fact, since ∅, V ∪ E ∈ P it is a
bounded lattice.

Let V ′ ⊂ P be the collection of all atoms of the lattice which is definable:

A ∈ V ′ ⇐⇒ A 6= ∅ ∧ ∀B(B < A =⇒ B = ∅),
and into one-to-one correspondence with V . Let also E ′ be the binary relation on
V ′ defined by the formula

AE ′B ⇐⇒ ∃C∃D
(

(A,B < C < D)∧

∀D′(D′ < D ∧D′ ∈ V ′ =⇒ D′ = A ∨D′ = B)

)
.

COMPUTABILITY III TOPICS IN COMPUTABILITY 3

It is easy now to see that the assignment (V,E) 7→ (V ′, E ′) provides a definition
of G inside P . �

A language L is called non-trivial if L contains a binary relation or a binary
function symbol or at least two unary function symbols.

Theorem 2 (Church). Let L be a non-trivial language. Then the collection Taut(L)
of all tautologies in L is undecidable.

Proof. If L ⊆ {R} with R binary then we can find a strongly undecidable L-structure
using the strongly undecidable graph G (How?).

If L ⊆ {f} with f binary then we can find a strongly undecidable L-structure by
using the previous example and using f as the interpretation of the characteristic
function χR of R.

If L ⊆ {d, r} with d, r unary then we can find a strongly undecidable L-structure
as follows. Let G = (V,E) be a strongly undecidable graph and set B = V ∪ E.
For every a ∈ V set d(a) = r(a) = a and for every (a, b) ∈ E let d((a, b)) = a
and r((a, b)) = b. This determines an {d, r}-structure B = (B, dB, rB) which can
be extended to an L structure (by arbitrarily defining the interpretations of the
remaining symbols). Notice that ”V ” is definable by the formula d(x) = x and E is
definable by the formula

ϕ(x, y) ≡ ∃z(¬d(z) = z ∧ d(z) = x ∧ r(z) = y).

�

2. The word problem

2.1. Intro. A semigroup is a set S together with a binary associative operation
· : S × S → S. We will consider here monoids which moreover have an identity
element, i.e., some 1 ∈ S with 1 ·s = s ·1 = s, for all s ∈ S (these are usually called
monoids). A semigroup S is a group if it is endowed additionally with a unary
operation s 7→ s−1, the inverse, so that s · s−1 = s−1 · s = 1 for all s ∈ S. We will
usually denote groups by Γ. In most cases one defines a semigroup by providing a
presentation

S = 〈a1, . . . , an | R1, . . . Rk〉,
where Ri is an expression of the form wi = vi, with wi, vi ∈ {a1, . . . , an}∗. The
semigroup defined by such presentation is the quotient A∗/ ∼ of A∗ = {a1, . . . , an}∗
via the the equivalence relation that is “spanned” by the relations R1, . . . Rk (see
Definition ??). Similarly the group defined by the presentation

Γ = 〈a1, . . . , an | R1, . . . Rk〉,
is the quotient (A∪A−1)∗/ ∼ of (A∪A−1)∗ = {a1, . . . , an, a

−1
1 , . . . , a−1

n }∗ via the the
equivalence relation that is “spanned” by the relations R1, . . . Rk and the relations
a−1
i ai = 1 = aia

−1
i for all i ≤ n. Here are some examples (draw pictures):

F semi
2 = 〈a, b〉 = all finite words in alphabet {a, b} under composition.

4 ARISTOTELIS PANAGIOTOPOULOS

Asemi2 = 〈a, b | ab = ba〉 = the abelian version of the above.

Similarly we have the group versions of these two. For example F2 = 〈a, b〉 is
the collection of all words in a in alphabet {a, b, a−1, b−1} where any instance of
a−1a, aa−1, b−1b, bb−1 is collapsible to the empty sequence θ, and similarly for A2.

The word problem. Given a presentation 〈a1, . . . , an | R1, . . . Rk〉 of a semigroup
find an algorithm which in input (w, v) ∈ A∗ = {a1, . . . , an}∗ decides whether w ∼ v.
Similarly for presentations of groups.

For example, in F semi
2 we have that w ∼ v iff w = v. For Asemi2 one can easily

implement an algorithm bringing every word w in the form (akwblw) and then one
sees that w ∼ v iff kw = kv and lw = lv. Here is another example. Consider the
group

Γ = 〈a, b | ab = ba, a3 = 1〉.
Again there is a simple algorithm which, given w ∈ (A ∪ A−1)∗, it finds a word
equivalent to w, of the form (akwblw) where kw ∈ {0, 1, 2} and w ∼ v iff kw = kv and
lw = lv.

aabab−1ab→ aaabb−1ab→ aaaab→ ab.

We have the following theorem.

Theorem 3 (Post, Markov (1947)). There are semigroups for which the word prob-
lem is undecidable

Of course this does not directly imply that the word problem for groups is unde-
cidable in general. For example in the case of groups problem of deciding, given any
w, v, whether w ∼ v reduces to the seemingly simpler problem of deciding whether
w′ ∼ 1 for any given w′. Indeed the proof f the next theorem is significantly harder:

Theorem 4 (Novikov (1955), Boone (1959)). There are groups for which the word
problem is undecidable.

Our first task is to prove Theorem 4 by reducing it to the more general problem
of solving semi-Thue processes and showing that this latter one is undecidable.

2.2. Semi-Thue processes and the word problem for semigroups. Let A =
{a1, . . . , an} be a finite alphabet. A semi-Thue production is a pair of words
(w, w̄) which we denote by w → w̄. Asemi-Thue process is a finite list Π of
productions P . If P is the production w → w̄ and u, v ∈ A∗ then we write

u⇒P v whenever ∃x, y ∈ A∗(u = xwy ∧ v = xw̄y)

Write u ⇒Π v whenever ∃p ∈ Π(u ⇒P v). Finally we write u ⇒∗Π v if there is a
sequence of productions leading from u to v.

Word problem for Π. Is there an algorithm which decides, given u, v ∈ A∗,
whether u⇒∗Π v? If so, we say that Π is solvable. Otherwise it is unsolvable.

Exercise.

(1) If A = {a} then any production system Π on A is solvable.

COMPUTABILITY III TOPICS IN COMPUTABILITY 5

(2) In any alphabet A, if Π consists of one production then Π is solvable.

Theorem 5. There is an unsolvable semi-Thue process Π is some alphabet A.

Proof. For every Turing machine M we define a semi-Thue process ΠM with the
property that the halting problem for M reduces to the word problem for ΠM .

It suffice to consider Turing machines in alphabet {1}. Let M be such a Turing
machine and use the symbol 0 to represent the empty squares of the tape. Let
Q0, . . . , QN be the collection of all states of M where Q0 is the initial state and
QN is the terminal state and recall that M is entirely determined by a finite set of
instructions, which are 5-tuples of the form (Qi, a, b,D,Qj), with a, b ∈ {0, 1} and
D ∈ {Left,Right}, so that b,D,Qj are uniquely determined by Qi, a.

We define a semi-Thue process ΠM in the alphabetA = {0, 1, Q0, . . . , QN , Q,Q
′,#}.

We will use words of the form #uQiv# with u, v ∈ {0, 1}∗ to represent the situation
description of M which is in Qi state and has the string uv in the (so far explored or
written)tape with the read-write head in the first letter of v. ΠM contains precisely
all productions from the following four categories:

(1) For every instruction of the form (Qi, a, b,Right, Qj) include:

Qia0→ bQj0 Qia1→ bQj1 Qia#→ bQj0#

(2) For every instruction of the form (Qi, a, b,Left, Qj) include:

0Qia→ Qj0b 1Qia→ Qj1b #Qia→ #Qj0b

(3) Include QN0→ Q0 and QN1→ Q1
(4) Include Q0→ Q, Q1→ Q, Q#→ Q′#, 0Q′ → Q′, 1Q′ → Q′

Notice now that all possible initial states of M correspond to the words:

#Q00# #Q01# #Q011# · · · #Q01(n)# · · ·

where 1(n) stands for n-many 1’s. If M halts at the input 1(n) then it is immediate
that for some u, v ∈ {0, 1}∗ we have that

#Q01(n)# ⇒∗Π #uQNv# ⇒(3) #uQv# ⇒∗Π #uQ# ⇒∗Π #Q′#.

Claim. Conversely, if #Q01(n)# ⇒∗Π #Q′# then M halts at the input 1(n).

Proof. The only way to reach #Q′# uses productions of the type (3),(4). Hence,
by backtracking we see that #Q01(n)# ⇒∗Π #uQNv#, for some u, v ∈ {0, 1}∗.
Notice that this later production can only use moves of type (1),(2) which correspond
precisely to the computation of M and since QN is terminal M terminates for the
desired input. �

Let now M be any Turing machine whose halting problem is not decidable (for
example the universal Turing machine). The semi-Thue process ΠM for this M will
not be solvable. �

6 ARISTOTELIS PANAGIOTOPOULOS

2.3. Thue processes. To each production w → w̄ we associate its inverse w̄ → w.
A Thue process Π is a semi-Thue process which is closed under inverses. We can
therefore write w− w̄ without indicating direction and as a consequence⇒∗Π induces
an equivalence relation u ∼Π v on A∗. We write [u] = [u]Π = {v ∈ A∗ | u ∼ v}
for the equivalence of u and set S = SΠ = A∗/ ∼ be the collection {[u] | u ∈ A∗}.
Notice that concatenation in A∗ pushes forward to a multiplication · on S since

u ∼Π u′ and v ∼Π v′ imply uv ∼Π u′v′

So (S, ·), with [u] · [v] = [uv] is a semigroup which has [θ] as an identity element.
Conversely notice that every semigroup presentation corresponds to a Thue process
Π and we set SΠ to be the semigroup defined by the presentation. This formalizes
what we previously called “semigroup defined by the presentation”.

Theorem 6. There is a semigroup S with finite presentation whose word problem
is undecidable.

Proof. Recall that in the proof of Theorem 5 we associated to each M a semi-Thue
process ΠM . Let Π∗M be the Thue process resulting from additionally including all
inverse productions of ΠM . With the notation of the proof of Theorem 5 we have:

Claim. #Q01(n)# ⇒ΠM
#Q′# if and only if #Q01(n)# ∼∗Π∗M #Q′#.

Proof. The⇒ direction is obvious. For the other assume that #Q01(n)# ∼∗Π∗M #Q′#

and let

w0 ⇒P ∗0
w1 ⇒P ∗1

· · · ⇒P ∗n−1
wn

be a witness to this, i.e. w0 = #Q01(n)#, wn = #Q′# and P ∗i ∈ Π∗M for all i. We
will extract from this a production in ΠM from w0 to wn.

Let i ≤ n − 1 be the largest possible i with the property that P ∗i 6∈ ΠM . Notice
that i has to be strictly less than n− 1 because there is no production in ΠM which
transforms #Q′#. Consider now the subsequence

wi ⇒P ∗i
wi+1 ⇒P ∗i+1

wi+1

and notice that by our assumptions we have that P := (P ∗i)−1 andR := P ∗i+1 are in
ΠM . So we have the following diagram in ΠM :

wi ⇐P wi+1 ⇒R wi+1

But notice now in each of the w0, . . . , wn there is a unique appearance of some “Q”
symbol and by looking carefully at the rules of ΠM we see that there is a unique
rule applying to wi+1, i.e. P = R. We therefore have that wi = wi+2.

Inductively we can therefore remove all P ∗i which are not in ΠM . �

By the claim (and the argument in Theorem 5) the proof of the theorem follows.
�

COMPUTABILITY III TOPICS IN COMPUTABILITY 7

2.4. Parenthesis: origin constrain domino tilling problem. By a domino
type we mean a square of unit size with each edge labeled by some letter. Let D
be a finite set of domino types and let d0 ∈ D. A (D, d0)-tilling of R2 is a way of
covering the entire R2 by squares of type D so that

(1) the vertexes of each domino are placed on the lattice Z2;
(2) a domino of type d0 is placed in the origin {(0, 0), (0, 1), (1, 0), (1, 1)}
(3) adjacent edges have the same labels.

Is there an algorithm which, given finite D and d0, decides whether there is a
(D, d0)-tilling?

8 ARISTOTELIS PANAGIOTOPOULOS

2.5. The word problem for groups. Recall that a group presentation consists
of finite alphabet A = {a1, . . . , an} together with a finite collection R of relations
R1, . . . Rk where Ri is an expression of the form, wi = w̄i with wi, w̄i ∈ A∗. The
group Γ = 〈a1, . . . , an | R1, . . . Rk〉 generated by the presentation is the semigroup
associated to the following Thue process Πgrp

A,R on alphabet A∩A−1 = {a1, . . . , an}∪
{a−1

1 , . . . , a−1
n }. We include the following two types of productions: for every ai ∈ A

we add the productions aia
−1
i − θ and aia

−1
i − θ; for every relation Ri ≡ wi = w̄i in

the presentation we add the production wi− w̄i. See subsection 2.3 for details. The
main theorem of this subsections is the following:

Theorem 7 (Novikov, Boone). There is a group presentation whose word problem
is undecidable, i.e., there is a presentation A,R whose associated Thue process Πgrp

A,R
has undecidable word problem.

For the proof of this theorem we will nee to: review some standard group theo-
retic constructions such as free products and HNN constructions; introduce modular
machines as models of computation and show that one can reduce one them the
halting problem; show that the halting problem for modular machine reduces to the
word problem for presentations of groups.

We start by reviewing some group theoretic constructions. Let ΓA,ΓB we two
groups with presentationsA = {a1, . . . , an}, R1, . . . , Rk andB = {b1, . . . , bm}, S1, . . . , Sl
respectively. Assume that A ∩B = ∅. Their free product is simply the group

ΓA ∗ ΓB := 〈a1, . . . , an, b1, . . . , bm | R1, . . . Rk, S1, . . . , Sl〉.

Since A ∩ B = ∅, it is not difficult to see that every word in A ∪ B is equivalent in
ΓA ∗ΓB to a word of the form w0w1 · · ·wN where wi is either a word in A or a word
in B with A,B alternating from i to i+ 1 and for every i > 0 we have that wi 6= θ.
In particular the free group in two generators 〈a, b〉 is the special case Z ∗ Z of this
construction. Geometrically one can think of ΓA ∗ ΓB as tree (draw tree).

Recall that a group homomorphism is a map ϕ : Γ → ∆ between groups with
ϕ(gh) = ϕ(g)ϕ(h). It is an isomorphism if ϕ is bijective. An isomorphism from
Γ to itself is called an automorphism. A special type of an automorphism Γ→ Γ
is given by conjugating by a fixed element h ∈ Γ, i.e. g 7→ h−1gh. These are
precisely the inner automorphisms of Γ. Let now H,K be subgroups of Γ and let
ϕ : H → K be an isomorphism of Γ. One often cares about the case when ϕ can be
“implemented” by a global symmetry of the group, i.e., one often would like to be
able to find some automorphism ϕ̃ of Γ which extends ϕ. Of course this is not always
possible but one following construction shows that if we are allowed to extend Γ to
a slightly larger group Γϕ then we can find, in fact, an inner automorphism of Γϕ
which extends ϕ.

Let Γ = 〈a1, . . . , an | R1, . . . , Rk〉 and let ϕ : H → K be an isomorphism between
subgroups of Γ. The HNN extension of Γ with respect to ϕ is the group

Γϕ = 〈a1, . . . , an, t | R1, . . . , Rk, (t
−1ht = ϕ(h))h∈H〉

COMPUTABILITY III TOPICS IN COMPUTABILITY 9

In fact it suffice to include a relation t−1ht = ϕ(h) for every h in a fixed generating
set of H. We call t the stable letter of the HNN extension. We will need two facts
regarding HNN extensions which we will take for granted for now and later derive
both of them from a common lemma.

Lemma 8. The homomorphism g 7→ g from Γ to Γϕ is injective, i.e., Γ ⊆ Γϕ.

Proof. Postponed for the end of the section. �

A subgroup L of Γ is balanced with respect to ϕ if ϕ(L ∩H) = L ∩K.

Lemma 9. If L is a balanced subgroup of Γ then the subgroup L′ of Γϕ generated by
L and t is the HNN extension Lϕ�L∩H of L with respect to ϕ�L∩H and L′ ∩Γ = L.

Proof. Postponed for the end of the section. �

Sketch some topological perspective on presentations, free products and HNN
extensions. Van Kampen theorem. Wedge sum. Adding mapping cylinders.

Next we introduce modular machines as a model of computation. This is an alter-
native to Turing machines that is slightly less handy for performing computations
but it has the advantage of being easily reducible to the word problem. A mod-
ular machine M consists of a natural number M > 1 together with a finite set
of instructions, i.e., quadruples of the form (a, b, c,D) where a, b < M , c < M2,
and D ∈ {L,R}. We assume that for every (a, b) there is at most one instruction
(a, b, c,D). A configuration for a modular machine is just a pair (α, β) ∈ N2. We
write (α, β)→M (α′, β′) if and only if α = uM + a and β = vM + b and there exists
c so that either:

(1) (a, b, c, R) ∈M and α′ = uM2 + c and β′ = v; or
(2) (a, b, c, L) ∈M and α′ = u and β′ = vM2 + c;

We write (α, β)→∗M (α′, β′) if there is a finite sequence

(α, β) = (α0, β0)→M (α1, β1)→M · · · →M (αn, βn) = (α′, β′)

A better way to think about modular machines is as follows: if (α, β) is a config-
uration then write α = Σk

i=0αiM
i and β = Σl

i=0βiM
i in M -ary expansion and think

of α and β as being the two lists:

(α0, α1, α2, . . . , αk) & (β0, β1, β2, . . . , βl)

If (a, b, c, R) applies to (α, β) then write c = c0 + c1M and notice that (α′, β′)
corresponds to

(c0, c1, α1, α2, . . . , αk) & (β1, β2, . . . , βl).

Similarly, if (a, b, c, L) applies to (α, β) then (α′, β′) corresponds to

(α1, α2, . . . , αk) & (c0, c1, β1, β2, . . . , βl).

Theorem 10. There exists a modular machine M so that the halting set

H(M) :=
{

(α, β)→∗M (0, 0)
}

is not recursive.

10 ARISTOTELIS PANAGIOTOPOULOS

Proof. Let T be a Turing machine so that the set of all halting positions if not
recursive. By adding some additional code to T we can make sure that whenever T
halts the tape of T is empty.

Use the numbers 0, 1, . . . , N − 1 to represent states of T and the numbers N,N +
1, . . . ,M−1 to represent the alphabet of the tape of T . To each situation description

ak ak−1 . . . a1 Q a b1 b2 . . . bl−1 bl

where the head is on the cell containing a and T is in state Q associate the following
two configurations of M:

Configuration 1. (Q, a1, a2, . . . , ak) & (a, b1, b2, . . . , bl).

Configuration 2. (a, a1, a2, . . . , ak) & (Q, b1, b2, . . . , bl).

For every rule (Q, a, b,D,Q′) of T add inM the instructions (a,Q,Q′+ bM,D) and
(Q, a,Q′+bM,D). Notice for example if (Q, a, b, R,Q′) is a rule in T and the Turing
is in the above situation then the next situation would be

ak ak−1 . . . a1 b Q
′ b1 b2 . . . bl−1 bl

which is corresponds to the configurations

Configuration 1′. (Q′, b, a1, a2, . . . , ak) & (b1, b2, . . . , bl).

Configuration 2′. (b1, b, a1, a2, . . . , ak) & (Q′, b2, . . . , bl).

We leave now to the reader to wrap up the proof. �

COMPUTABILITY III TOPICS IN COMPUTABILITY 11

Next we describe the construction of a finite group presentation whose word prob-
lem is not decidable. The plan is to start with the group

G := 〈t, x, y | xy = yx〉 = Z ∗ Z2

and extend this presentation by taking finitely many HNN extensions, in a way that
the halting problem for M in the theorem above reduces to the word problem for
the resulting group presentation. For every state (α, β) ∈ N2 consider the word:

t(α, β) := x−αy−βtxαyα

and let T = 〈t(α, β) | α, β ∈ N〉 be the subgroup of G spanned by {t(α, β)}α,β∈N.

Claim. T is freely generated by {t(α, β) : α, β ∈ N}.

Proof. Recall that a word v0v1 · · · vn in some alphabet (A ∪ A−1)∗ is call reduced
there is no i < n so that vi = v−1

i+1 or v−1
i = vi+1. We need to show that any non-

empty reduced word v0v1 · · · vn in
(
{t(α, β) : α, β ∈ N} ∪ {(t(α, β))−1 : α, β ∈ N}

)∗
is not equal to 1 in G. This follows by an easy induction on n. �

Having “coded” the state (α, β) by the word t(α, β) we proceed now to “code”
the instructions of the machine M. For every instruction (a, b, c, R) in M we will
introduce an isomorphism φ between certain subgroups G and then pass to the HNN
extension Gφ with stable letter r. Similarly for (a, b, c, L) inM we will introduce an
isomorphism ψ between certain subgroups G and then pass to the HNN extension
Gψ with stable letter l. The fact that we can realize all these HNN extensions
simultaneously is just a consequence of Lemma 9.

Let (a, b, c, R) in M. We want this operation to “transform” every word of the
form t(uM + a, vM + b) to the word t(uM2 + c, v). That is, we want

x−uMy−vM(x−ay−btxayb)xuMyvM

to get “transformed” to

x−uM
2

y−v(x−ctxc)xuM
2

yv.

This transformation can be implemented by the assignment:

xM 7→ xM
2

, yM 7→ y, t(a, b) 7→ t(c, 0).

This assignment describes an isomorphism ϕ : GM,M
a,b → GM2,1

c,0 between the sub-
groups

GM,M
a,b = 〈xM , yM , t(a, b)〉, GM2,1

c,0 = 〈xM2

, y, t(c, 0)〉
of G which are both isomorphic to Z ∗ Z2. Similarly if (a, b, c, L) is in M then we

consider the isomorphism ψ : GM,M
a,b → G1,M2

0,c between the subgroups

GM,M
a,b = 〈xM , yM , t(a, b)〉, G1,M2

0,c = 〈x, yM2

, t(0, c)〉
of G, given by the assignment

xM 7→ x, yM 7→ yM
2

, t(a, b) 7→ t(0, c).

12 ARISTOTELIS PANAGIOTOPOULOS

Given a modular machine M defined by M and the collection of instructions

{(ai, bi, ci, R) : i ∈ I} ∪ {(aj, bj, cj, L) : i ∈ J}
we define the group GM given by the following presentation. For every i ∈ I we
introduce a new letter ri and we let Gi be the HNN extension of G with respect to
the corresponding ϕi described above and with stable letter the letter ri. Similarly,
for every j ∈ J we introduce a new letter lj and we let Gj be the HNN extension of G
with respect to the corresponding ψj with stable letter the letter lj. By Lemma 8 G
is a subgroup of Gi and Gj for all i, j and by Lemma 9 we can realize all these HNN
simultaneously in the following presentation where i, j range over I, J respectively

GM := 〈x, y, t, ri, lj | xy = yx, r−1
i GM,M

ai,bi
ri = ϕi(G

M,M
ai,bi

), l−1
j GM,M

aj ,bj
lj = ψj(G

M,M
aj ,bj

)〉.
Let now HM be the subgroup of GM that is generated by the elements

{ri : i ∈ I} ∪ {lj : j ∈ J} ∪ {t(α, β) : (α, β)→∗M (0, 0)}
and let FM be the subgroup of GM that is generated by the elements

{ri : i ∈ I} ∪ {lj : j ∈ J} ∪ {t}
Lemma 11. We have that HM = FM.

Proof. Trivially we have that t = x0y0tx0y0 = t(0, 0) and (0, 0) →∗M (0, 0). Hence
we have that HM ⊇ FM.

Conversely, we show by induction on the length of the computation of→∗M that if
(α, β)→∗M (0, 0) then t(α, β) ∈ FM. For the induction step assume that (α, β)→M
(α′, β′) and that t(α′, β′) ∈ FM. Assume that this transition is performed by an
instruction of the form (a, b, c, R), say the i-th instruction (ai, bi, ci, R). The obser-
vation now is that the subgroup of GM generated by {t(α, β) : (α, β)→∗M (0, 0)} is
a balanced subgroup of G (with respect to ϕi) and therefore, within HM we still
have r−1

i t(α, β)ri = t(α′, β′). Hence, t(α, β) = rit(α
′, β′)r−1

i , and it follows by the
induction hypothesis that t(α, β) ∈ FM. �

The last lemma reduces the problem of checking whether (α, β) halts in M to
checking whether t(α, β) as an element of GM is actually an element of FM. The
next trick allows us to reduce it further to the word problem of a group presentation.

Theorem 12. There is a finitely presented group G∗M with unsolvable word problem.

Proof. Let M be the modular machine from Theorem 10 and let GM be the as-
sociated group and FM its subgroup, both described in the previous paragraphs.
Let

G∗M := 〈GM, s | s−1FMs〉
be the HNN extension of GM with respect to the isomorphism id: FM → FM. Since
FM is finitely generated the above presentation is finite. Moreover, by Lemma 9 and
the claim after the definition of G we have that s−1gs = g if and only if g ∈ FM.
Thus

(α, β)→∗M (0, 0) ⇐⇒ t(α, β) = s−1t(α, β)s in G∗M

COMPUTABILITY III TOPICS IN COMPUTABILITY 13

�

We are left to prove Lemma 8 and Lemma 9. Both will follow from the normal
form theorem for HNN extensions.

Let ϕ : H → K be an isomorphism between subgroups of the group Γ. Let also

Γϕ = 〈Γ, t | t−1Ht =ϕ K〉
be the HNN extension of H with respect to ϕ. Fix a section SH ⊂ γ for the
right cosets of H in Γ and a section SK ⊂ γ for the right cosets of K in Γ, i.e.
Γ = tg∈SH

Hg and similarly Γ = tg∈SK
Kg. We assume the elements g ∈ SH and

g′ ∈ SK representing H and K are equal to 1. A normal form (w.r.t. SH , SK) is
a sequence

g0t
ε1g1t

ε2g2 · · · tεngn,
with εi ∈ {−1, 1} and gi ∈ Γ, so that for all i we have

(1) if εi = −1 then gi ∈ SH ;
(2) if εi = 1 then gi ∈ SK ;
(3) tεigit

εi+1 is never equal to tε1t−ε.

A variant of the following theorem is often referred to as Britton’s lemma.

Theorem 13. For every Γ, H,K, ϕ, SH , SK as above, every word w ∈ Γ ∗ 〈t〉 is
equivalent in Γϕ to a unique normal form.

Proof. First we show that every such word w is equivalent in Γϕ to some normal form.
Since t−1Ht =ϕ K holds in Γϕ we have the following quasi-commuting relations:

t−1h = ϕ(h) t−1 and t k = ϕ−1(k) t

for every h ∈ H and for every k ∈ K. As a consequence, given any word

w = γ0t
ε1γ1t

ε2γ2 · · · tεn−1γn−1t
εnγn,

we can use these relations going right to left and transform gradually w to a normal
form. For example if εn = 1 then the second relation applies: write γn as kgn where
gn ∈ SK and use the quasi-commutation to transform w to

w′ = γ0t
ε1γ1t

ε2γ2 · · · tεn−1γn−1ϕ
−1(h)tεngn.

After we reach to the end we cancel out all possible instances of (3) and repeat
the process. Every time we cancel out all possible instances of (3) the length of w
strictly decreases so the process eventually terminates.

To show uniqueness we employ an idea of Artin & van der Waerden. Let W be
the collection of all normal forms and let S(W) be group of all permutations of the
set W . We define an action of Γϕ on W , i.e., a homomorphism Φ: Γϕ → S(W).
For that it suffices to explain where t maps and where each g in Γ maps and make
sure that all relations coming from t−1Ht =ϕ K, γγ−1 = 1 = γ−1γ, push forward to
relations which hold in S(W). If g ∈ Γ set

Φ(g)(g0t
ε1g1t

ε2g2 · · · tεngn) = gg0t
ε1g1t

ε2g2 · · · tεngn

14 ARISTOTELIS PANAGIOTOPOULOS

When it comes to t we distinguish two cases. If g0 ∈ K and tε1 = t−1 then set

Φ(t)(g0t
ε1g1t

ε2g2 · · · tεngn) = ϕ−1(g0)g1t
ε2g2 · · · tεngn.

Otherwise set

Φ(t)(g0t
ε1g1t

ε2g2 · · · tεngn) = ϕ−1(k)tg′0t
ε1g1t

ε2g2 · · · tεngn,
where g0 = kg′0 with g0 ∈ SK .

Exercise 14. Show that Φ is a homomorphism, i.e., show that Φ(t) (for Φ(g) it is
immediate) is a permutation (hint: define an inverse) and show that all the relations
from the HNN presentation push forward to relations of S(W).

Notice now that if g0t
ε1g1t

ε2g2 · · · tεngn is in normal form then

Φ(g0t
ε1g1t

ε2g2 · · · tεngn)(1) = g0t
ε1g1t

ε2g2 · · · tεngn.
So the elements in Γφ corresponding to two distinct normal forms map via Φ to
different elements of S(W) and therefore they are distinct elements. �

3. Decidable theories

Contrary to the theory of (N, 0, S,+, ∗, <), the theory of partial orders, or the
theory of graphs there are many first order theories which are decidable. To study
decidability one has, for starters to restrict to recursive languages. This is not a real
restriction since we will mostly deal with finite language which are always recursive.

A language L = {R(n)
i , . . . , f

(m)
j , . . . , ck, . . .} is recursive if the set

{(n, i,m, j, k) | R(n)
i , f

(m)
j , ck ∈ L}

is recursive. Given a recursive language it is not difficult to see that the collections
of all formulas and of all sentences are recursive.

The most useful technique in showing that some theory T is decidable (i.e. recur-
sive) is quantifier elimination.

3.1. Elimination of quantifiers.

Definition 15. An L-theory T admits elimination of quantifiers if for every
formula ϕ(x1, . . . , xn), there exists a quantifier-free formula ϕ∗(x1, . . . , xn) so that

T ` ϕ(x1, . . . , xn) ⇐⇒ ϕ∗(x1, . . . , xn)

It is important in the above definition that ϕ∗ is in the same set of variables with
ϕ. There is one problem with this steaming from the way we defined first order logic:
if L has no constant symbols then it has no quantifier free sentence and therefore if,
for example, ∃x∀yq(x, y) is an L-sentence (say in prenex normal form) then we will
not be able to get read of both quantifiers. To resolve this we could have defined
first order logic to contain the 0-ary predicates > and ⊥ which are always true and
false respectively L-sentences for each L.

Since we will often work with L that contains constants we will not do this. Instead
whenever L has no constants and ϕ is a sentence we will allow in the definition above

COMPUTABILITY III TOPICS IN COMPUTABILITY 15

ϕ∗ to be either ∃x(x = x) or ∃x¬(x = x) which function like > and ⊥ but have
quantifiers.

Of course when L contains no constants if T has quantifier elimination then T is
complete since every L-sentence is provably equivalent to either > := ∃x(x = x) or
⊥:= ∃x¬(x = x). However, even if L has constants, quantifier elimination reduces
the validity of any sentence to the validity of a quantifier-free sentence which is much
easier to deal with. In fact, showing that a theory T is decidable often reduces to
the following two steps:

(1) show that there is an algorithm for reducing ϕ to ϕ∗;
(2) show that there is an algorithm for deciding ”T ` q” for all quantifier free

formulas.

Examples. Let TR be the theory of (R, 0, 1,+, ∗, <) and consider the sentence

∃x(ax2 + bx+ c = 0).

Then one can eliminate the quantifier ∃ since this sentence is TR-equivalent to

(b2 − 4ac > 0) ∨ (b2 − 4ac = 0 ∧ a 6= 0) ∨ (a = b = c = 0)

Similarly the sentence ∃1∃2(ax1 + bx2 = 0 ∧ cx1 + dx2 = 0) is equivalent to

ad− bc 6= 0

The following criterion for quantifier elimination, while very basic, it is quite useful.

Lemma 16 (QE-criterion 1). T admits elimination of quantifiers if and only if T
admits elimination of quantifiers for all formulas of the form

∃y
(
α1(y, x̄) ∧ · · · ∧ αn(y, x̄)

)
,

where αi(y, x̄) is either an atomic formula or a negation of an atomic formula

Proof. Assume that T eliminates quantifiers for this special type of formulas. Then
we prove inductively that it eliminates quantifiers for all formulas:

(1) if ϕ is quantifier-free then set ϕ∗ = ϕ;
(2) (¬ϕ) := ¬ϕ∗;
(3) (ϕ ∧ ψ)∗ := ϕ∗ ∧ ψ∗;
(4) To define (∃yϕ)∗ we proceed as follows. First let ϕ∗ be the quantifier-free

formula equivalent to ϕ which exists by inductive hypothesis. We can always
write such ϕ∗ in disjunctive normal form, i.e.,

T ` ϕ∗ ⇐⇒
(
(α1

1 ∧ · · · ∧ α1
n(1)) ∨ · · · ∨ (αk1 ∧ · · · ∧ αkn(k))

)
and therefore we have that

T ` ∃yϕ∗ ⇐⇒ ∃y
(
(α1

1 ∧ · · · ∧ α1
n(1)) ∨ · · · ∨ (αk1 ∧ · · · ∧ αkn(k))

)
But ∃ distributes over ∨ and therefore by assumption

T ` ∃yϕ∗ ⇐⇒ ξ1 ∨ · · · ∨ ξk,

16 ARISTOTELIS PANAGIOTOPOULOS

where ξi is the quantifier free formula equivalent to αi1 ∧ · · · ∧ αin(i). Set

(∃yϕ)∗ := ∨iξi

�

We can now directly apply this criterion to the following example. Let L =
{<} and consider the L-theory of dense linear orderings without endpoints
DLO±∞. This theory is axiomatized by the following axioms

(1) ∀x∀y
(
x < y =⇒ (¬y < x ∧ ¬x = y)

)
(2) ∀x∀y∀z

(
(x < y ∧ y < z) =⇒ x < z

)
(3) ∀x∀y(x < y ∨ x = y ∨ y < x)
(4) ∀x∀y

(
x < y =⇒ ∃z(x < z ∧ z < y)

)
(5) ∀x∃y(x < y), ∀x∃y(y < x)

Here (1)-(3) declare that < is a linear ordering, (4) says that it is dense, and (5)
that it has no endpoints. The prototypical example of a structure which satisfies
this theory is (Q, <). Another example is (R, <).

Theorem 17. The theory DLO±∞ admits elimination of quantifiers.

Proof. We will use the criterion provided by lemma 16. So consider any L-formula

ϕ(x̄) ≡ ∃y
(
α1(y, x̄) ∧ · · · ∧ αn(y, x̄)

)
,

where αi(y, x̄) is either an atomic formula or a negation of an atomic formula. The
possible forms of αi(y, x̄)’s are:

(a < b), (a = b), ¬(a < b), ¬(a = b),

where a and b can be either equal to y or any entry from x̄. Notice that we can
assume without loss of generality that ϕ(x̄) uses only the first two forms. To see
this, notice that DLO±∞ proves that:

¬(a < b) ⇐⇒
(
(a = b) ∨ (b < a)

)
and ¬(a = b) ⇐⇒

(
(a < b) ∨ (b < a)

)
,

and since ∃ distributes over ∨ the formula ϕ is DLO±∞-equivalent to a formula:

∃y(α1
1 ∧ · · · ∧ α1

n) ∨ ∃y(α2
1 ∧ · · · ∧ α2

n) ∨ ∨ ∃y(αk1 ∧ · · · ∧ αkn).

Where each αij is either of the form (a < b) or (a = b). For example if α1 ≡ ¬(a = b),

DLO±∞ ` ϕ ⇐⇒ ∃y
(
(a < b) ∧ α2 ∧ · · · ∧ αn

)
∨ ∃y

(
(b < a) ∧ α2 ∧ · · · ∧ αn

)
So we assume that ϕ involves only (a < b) and (a = b) where a, b ∈ {y, x̄}. Moreover
if y does not appear in some αi we could remove it from the scope of the ∃y. Finally
if y = y appears somewhere we can remove it and if y < y appears somewhere,
axiom (1) implies that DLO±∞ ` (ϕ ⇐⇒ ⊥). So we can assume that ϕ(x̄) is of the
form:

∃y
(
xi1 < y ∧ . . . ∧ xik < y) ∧ (y < xj1 ∧ . . . ∧ y < xjl) ∧ (y = xr1 ∧ . . . ∧ y = xrm)

)

COMPUTABILITY III TOPICS IN COMPUTABILITY 17

But if the last parenthesis is non-empty, say y = xr1 is there, then we the formula
is equivalent with the formula attained by removing ∃y and replacing all instances
of y with xr1 . We can therefore assume that ϕ(x̄) is of the form:

∃y
(
xi1 < y ∧ . . . ∧ xik < y) ∧ (y < xj1 ∧ . . . ∧ y < xjl)

)
If either of the two parenthesis is empty then by Axiom (5) we have that DLO±∞ `
(ϕ ⇐⇒ >). Otherwise, by Axiom (4) we have that

DLO±∞ `
(
ϕ(x̄) ⇐⇒

∧
n≤k,m≤l

xin < xjm

)
.

�

Corollary 18. Since L in DLO±∞ contains no symbols the above theorem shows
that every sentence σ is either equivalent to > or to ⊥. In other words DLO±∞
is complete. It is moreover decidable. One can see that either by Corollary 62 of
the notes in math117b or from the fact that the QE procedure described above is
algorithmic.

3.2. Model theoretic criteria for QE. Lemma 16 can be thought of as a “syn-
tactic” criterion for quantifier elimination. Here we develop a very useful “semantic”
criterion. That is, a criterion that is implies QE for some theory T as long as the
the collection of all models of T behave nicely under “extending” and “gluing.” We
start with a lemma.

Lemma 19. Let T be an L-theory and let σ be an L-sentence. The following are
equivalent:

(1) there exists a quantifier free σ∗ so that T ` (σ ⇐⇒ σ∗);
(2) for every two L-structures A,B with A,B |= T , if A,B satisfy the same

quantifier-free sentences, then A |= σ ⇐⇒ B |= σ.

Proof. (1) =⇒ (2) is clear.
(2) =⇒ (1). Before we prove it in complete generality let see what does this

say about the case where L has no constants. In that case, the assumption “if A,B
satisfy the same quantifier-free sentences” is always satisfied simply because there
are no quantifier free sentences. So (2) becomes

“for every A,B |= T we have A |= σ ⇐⇒ B |= σ. ”

But then, by Gödel’s completeness theorem we know that T ` σ and therefore
T ` (σ ⇐⇒ >).

Let now L be arbitrary and assume (2). Consider the collection S of all quantifier-
free sentences with T ∪ {σ} ` S. Notice that it is enough to show that T ∪ S ` σ
because then (since proofs are finite) there would be σ1, . . . , σk ∈ S so that

T ` (σ1 ∧ . . . ∧ σk) =⇒ σ

18 ARISTOTELIS PANAGIOTOPOULOS

But since σ∗ := σ1 ∧ . . . ∧ σk is quantifier free σ∗ ∈ S (why?) we would have

T ` σ∗ ⇐⇒ σ

Claim. We have that T ∪ S ` σ.

Proof of claim. If this fails then by Gödel’s completeness theorem there is a model
A of T ∪ S so that A |= ¬σ. Let SA ⊇ S be the collection of all quantifier free
formulas satisfied by A. By assumption of (2), and since quantifier-free formulas
are closed under negation, every B with B |= T ∪ SA should also satisfy ¬σ. That
is T ∪ SA ` ¬σ so as above there is a single σA ∈ SA with T ` σA =⇒ ¬σ. Hence,
T ` σ =⇒ ¬σA and therefore ¬σA ∈ S which contradicts that A |= S. �

�

Before we provide the model-theoretic criterion for quantifier-elimination, here is
an example of a theory T which has models infinitely models which pairwise disagree
on the quantifier free sentences, yet we will see later that T admits elimination of
quantifiers. Let L = {0, 1,+, ∗} and consider the theory ACF of all algebraically
closed fields. This theory is axiomatized by:

(1) all axioms for fields;
(2) for every n the axiom ∀x0 · · · ∀xn∃y(xn 6= 0 =⇒ xny

n + · · ·+ x1y + x0 = 0)

Notice that ACF is satisfied by both the algebraic closure Qacl
of Q as well as the

algebraic closure Fp
acl

of Fp for each prime p. Notice that the following quantifier

free formula is satisfied only by Fp
acl

iff p = q, and for no q in the case of Qacl
:

q︷ ︸︸ ︷
1 + · · ·+ 1 = 0

Consider now the following two properties for the collection of all models of T .

Definition 20. Let T be an L-theory. We say that T has the isomorphism
property if for every A,B with A,B |= T and every isomorphism f0 : A0 → B0,
between substructures A0,B0 of A,B (possibly empty, do not model T in general)
this isomorphism extends to an isomorphism f1 : A1 → B1 between substructures
A1 ⊆ A,B1 ⊆ B with A1,B1 |= T .

Consider the example the structures A = (Q, <) and B = (R, <) of DLO∞, let
A0,B0 be empty and find f1...

Or consider the language L = {<, c1, c2, . . .} and consider the theory DLO∞
together with the axioms ci > ci+1 for all i. Consider the previous structures where
the constants span out the substructures A0 = ({1, 1/2, 1/3, . . .}, <) and B0 =
({−1,−2,−3, . . .}, <) and find f1.

Definition 21. Let T be an L-theory. We say that T has the absorption prop-
erty if for everyA ⊆ B withA,B |= T , any formula ϕ(x̄) of the form ∃y(α1∧· · ·∧αn)
where αi is atomic or negation of atomic, and every tuple ā from A, we have that

A |= ϕ(ā) ⇐⇒ B |= ϕ(ā)

COMPUTABILITY III TOPICS IN COMPUTABILITY 19

The combination of these two model theoretic properties provides a criterion for
quantifier elimination.

Theorem 22. Let T be an L-theory. If T has the absorption property and the
isomorphism property then T admits quantifier elimination.

Proof. Let ϕ(x̄) of the form ∃y(α1 ∧ · · · ∧ αn) where αi is atomic or negation of
atomic. We will find ϕ∗(x̄) so that T ` ϕ ⇐⇒ ϕ∗.

We introduce a constant ci for every xi in x̄ and consider the language L′ =
L
⋃
{c1, . . . , cn}. We view T as an L’-theory. Consider now the L′-sentence σ = ϕ(c̄).

Since we have not added any axioms for the ci’s, notice that if we find a quantifier-
free L′-sentence σ∗ so that T ` ϕ(c̄) ⇐⇒ σ∗ then we have T ` ϕ(x̄) ⇐⇒ ϕ∗(x̄)
for the unique quantifier-free L-formula ϕ∗(x̄) with σ∗ = ϕ∗(c̄).

So we will now focus on finding a quantifier-free L′-sentence σ∗ so that T `
ϕ(c̄) ⇐⇒ σ∗

Claim. The L′-theory T has the absorption property and the isomorphism property.

Proof. It easily follows from the definitions and we leave it as an exercise. �

To find the desired σ∗, by Lemma 19 it suffice to show that for every two L′-
structures A,B with T |= A,B and which satisfy the same quantifier free sentences,
we have that A |= ϕ(c̄) ⇐⇒ B |= ϕ(c̄). So let such A,B and consider the smallest
substructures A0,B0 of A,B respectively. These are precisely the structures which
are generated by the constants of L′. Since A,B satisfy the same quantifier-free
formulas, the map f0 : A0 → B0 defined by tA 7→ tB for every closed term t is an
isomorphism. By the isomorphism property it extends to an isomorphism f1 : A1 →
B1 with A1 ⊆ A,B1 ⊆ B which satisfy T . In particular A1 |= ϕ(c̄) ⇐⇒ B1 |= ϕ(c̄)
and by the absorption property (since c̄ names elements of A,B) we have

A |= ϕ(c̄) ⇐⇒ A1 |= ϕ(c̄) ⇐⇒ B1 |= ϕ(c̄) ⇐⇒ B |= ϕ(c̄)

�

We can now sketch the proof that the theory of algebraically closed fields defined
above has quantifier elimination. From that we will deduce some completeness and
decidability results.

Theorem 23. The theory ACF of algebraically closed fields admits elimination of
quantifiers.

Sketch of proof. By the last theorem it suffice to verify that ACF satisfies the iso-
morphism and the absorption property.

Isomorphism property. LetA,B |= ACF and let f0 be an isomorphism between
any substructures A0,B0 of A,B. Notice that if it happened that the characteristic
of A,B is 0 then A0,B0 are not even rings.

Step 1. Extend A0,B0 to substructures A′0,B′0 of A,B which are rings and f0 to
an isomorphism f ′0 between them.

20 ARISTOTELIS PANAGIOTOPOULOS

This is done as follows: for every a, a′ ∈ A0 the formula x+a = a′ defines a unique
element in A which may or may not be in A0. Add all such elements in A′0 and check
afterwards that A′0 is a ring. Similarly for B0. Finally extend f0 to f ′0 by sending
the unique solution of x + a = a′ in A to the unique solution of x + f0(a) = f0(a′)
in B. Check that f0 is an iso implies f ′0 is an iso.

Step 2. Extend A′0,B′0 to substructures A′′0,B′′0 of A,B which are fields and f ′0 to
an isomorphism f ′′0 between them.

Similar to the previous step: for every a, a′ ∈ A′0 with a 6= 0 define A′′0 by adding
all solutions to the formula x ∗ a = a′...

Step 3. Extend A′′0,B′′0 to substructures A1,B1 of A,B which satisfy ACF and f ′′0
to an isomorphism f1 between them.

Similar to the previous step: see any algebra book (or notes from Ma5).
Absorption property. Let A,B |= ACF with A ⊆ B and let ϕ(x̄) be a formula

of the form ∃y(α1 ∧ · · · ∧ αn), where αi is atomic or negation of atomic. Fix also a
ā from A. Every αi has one of the following two forms

t(x̄, y) = s(x̄, y) or ¬t(x̄, y) = s(x̄, y).

So there exist polynomials in one variable f1, . . . , fk and g1, . . . , gl with coefficients
from A so that ,B satisfy ϕ(ā) iff the following system has a solution in B:

f1(y) = 0, . . . , fk(y) = 0, g1(y) 6= 0, . . . , gl(y) 6= 0.

If k > 0 then since the coefficients of f1 are from A any solution of the system within
B lies actually in A. So in this case we indeed have A |= ϕ(ā) ⇐⇒ B |= ϕ(ā).

If k = 0 then we have a finite system of inequalities. Since each gi has finitely many
possible solutions then the system always has a solution in A (or B, respectively)
if A (or B) is infinite. But an algebraically closed field is always infinite since if it
was finite we could enumerate it a1, a2, . . . , aN and construct a polynomial without
a solution:

(x− a1)(x− a2) · · · (x− aN) + 1 = 0

�

Corollaries.
(1) Definable subsets of A in any model A of ACF are defined equivalently by

quantifier-free formulas. As a consequence they are either finite or cofinite,i.e., ACF
is minimal.

(2) While ACF is not complete, the theory ACFp where p is prime or 0 is com-
plete. By ACFp we mean the theory ACF to together with the axioms declaring
the characteristic of the field. To see this notice that since every sentence σ is prov-
ably equivalent to a quantifier free σ∗ then ACF0 ` σ iff (Q, 0, 1,+, ∗) |= σ∗ and
ACFp ` σ iff (Fp, 0, 1,+, ∗) |= σ∗.

(3) ACF0 axiomatizes (C, 0, 1,+, ∗).
(4) ACF0 as well as ACFp are decidable.

COMPUTABILITY III TOPICS IN COMPUTABILITY 21

3.3. Presburger arithmetic. We have seen that Th(N, 0, S,+, ∗, <) is undecid-
able. Similarly it was a homework problem last quarter that (N, 0, S, ∗, <) defines
addition and therefore the theory of the later is also undecidable. Here we will show
that if we remove ∗ rather than + the complexity of the theory drops significantly.

By Presburger Arithmetic TPresb we mean the theory of (N, 0, S,+, <).

Theorem 24. Presburger arithmetic TPresb is a decidable theory.

In order to prove this theorem we will establish first a quantifier elimination type
of result for TPresb. We say type of result because TPresb does not have QE as such.
For example notice that the following formula has no equivalent quantifier free one:

ϕ(x) ≡ ∃y(y + y = x)

Exercise. Prove this fact.
As a consequence we will need to introduce a collection of new predicates which

will replace some formulas which do not admit QE within TPresb. For every m ≥ 1
consider let x ≡m y be the binary relation x ≡ y mod m in N and notice that this
relation is already definable (N, 0, S,+, <) by the ∃1

ϕm(x, y) ≡ ∃z
(
(x = y +

m−times︷ ︸︸ ︷
z + · · ·+ z) ∨ (y = x+

m−times︷ ︸︸ ︷
z + · · ·+ z)

)
Let T+

Presb = Th(N, 0, S,+, <,≡2,≡3, . . . ,≡m, . . .). The following theorem shows
that the only formulas which do not admit QE in TPresb are essentially these con-
gruences.

Theorem 25. T+
Presb = Th(N, 0, S,+, <,≡2,≡3, . . .) admits quantifier elimination.

Proof. We will use Lemma 16, i.e., we will show that any formula ϕ(x̄) of the form

(*) ∃y(α1(x̄, y) ∧ · · · ∧ αN(x̄, y))

with αi atomic/negation of atomic, is equivalent to a quantifier free formula. First
we will show that we can restrict our attention to certain special such ϕ.

Step 0. An easy induction shows that every term in variables x̄, y is of the form

ny + t = ny + (n1x1 + · · ·+ nkxk + n′)

where ny = S(· · · (S(y)) · · ·) n-many times, n = S(· · · (S(0)) · · ·) n-many times,
and for the purposes of this proof it suffice to condense the parenthesis above to the
term t = t(x̄).

Step 1. Each αi can take one of the following forms:

(**) t1 = t2, t1 < t2, t1 ≡m t2, or t1 6= t2, t1 6< t2, t1 6≡m t2.

The first observation is that we can re-express everything as a disjunction of ex-
pression like in (∗) so that each αi there uses only the first three forms from (∗∗).
To see this just use the fact that ∨ distributes over ∃ after you replace t1 6= t2
with (t1 < t2 ∨ t2 < t1), t1 6< t2 with (t2 < t1 ∨ t1 = t2) , and t1 6≡m t2 with

22 ARISTOTELIS PANAGIOTOPOULOS

(∨m−1
i=1 (t1 ≡m t2 + i)). We can assume that y appears in each αi (otherwise we can

take it out of (∃y)) so each αi is in one of the forms:

ny + t = ly + s, ny + t < ly + s, ny + t ≡m ly + s.

By cancelling out y’s we have that each αi is in one of the forms:

ky + t = s, ky + t < s, t < s+ ky, ky + t ≡m s.

Step 2. Uniformize all the y-coefficients to py by multiplying each ky with p/k
where p is the lower common multiple of all k coefficients. Here each ky + t ≡m s
will change to py + t ∗ (p/k) ≡(p/k)∗m s ∗ (p/k). So each αi is in one of the forms:

py = “s− t”, py < “s− t”, “t− s” < py, py ≡m “s− t”.
where p is common across all αi and “t − s” < py stands for t < py + s (since we
have no “−” we cannot literally write t−s but it is easier to read this way). Finally
we can replace py with a new variable z and add a new αi at the end of the form
z ≡p 0. So in other words we have reduced (∗) to an expression that involves only
αi of the form z = s − t, z < s − t, z > s − t, z ≡m s − t (for readability we omit
“ ”).

Step 3. If there is any αi of the form z = s − t then we are done: remove the
quantifier ∃z and replace all appearances of z with s− t. So we can assume that (∗)
is of the form

∃z
((

(r1 − s1 < z) ∧ · · · ∧ (rl − sl < z)
)
∧

∧
(
(z < t1 − u1) ∧ · · · ∧ (z < tk − uk)

)
∧

∧
(
(z ≡m1 v1 − w1) ∧ · · · ∧ (z ≡mn vn − wn)

))
Case 1. If the third parenthesis is empty the above expression is equivalent to

l∧
i=1

k∧
j=1

(
(ri − si + 1 < tj − uj)

)
∧
(k∧
j=1

(0 < tj − uj)
)
.

Case 2. Otherwise the solution to the system still has to be between maxi(ri−si)
and minj(tj−uj) but moreover it has to satisfy the restrictions imposed by the third
parenthesis. But to find any solution to the restrictions of the third parenthesis it
suffice to scan any interval of length M = lcm{m1, . . . ,mn} between maxi(ri − si)
and minj(tj−uj). That is, we can replace ∃ with a

∨
bounded by M . The only catch

is that we cannot express directly min,max but instead we write the equivalent:

l∨
e=0

∨
q≤M

(∧
i≤l

(ri−si < re−se+q)∧
∧
j≤k

(re−se+q < tj−uj)∧
∧
p≤n

(re−se+q ≡mp up−wp)
)
,

where by r0 and s0 we mean 0 (this is used in case the first parenthesis in the ∃z
expression is empty.) �

We can now finish the proof of Theorem 24.

COMPUTABILITY III TOPICS IN COMPUTABILITY 23

Proof of Theorem 24. Let σ be any sentence in the language (0, S,+, <). The
proof of 25 provides an algorithm for reducing σ to a quantifier free sentence σ∗

of (0, S,+, <,≡2,≡3, . . .) so that TPresb ` σ ⇐⇒ σ∗ (here we replace ≡m with
ϕm(x, y). The proof now follows from the following exercise:

Exercise. Describe an algorithm that decides the truth-value of every quantifier-
free sentence σ∗ of (0, S,+, <,≡2,≡3, . . .) when this sentence is evaluated in

(N, 0, S,+, <,≡2,≡3, . . .)

�

Corollary 26. A ⊆ N is definable in (N, 0, S,+, <) if and only if A is eventually
periodic, i.e., if there exists M, p so that ∀n > M(n ∈ A ⇐⇒ n+ p ∈ A).

Proof. HW �

Corollary 27. Multiplication is not definable in (N, 0, S,+, <).

Proof. We know that (N, 0, S,+, ∗, <) defines all recursive (in fact all arithmetical
sets) and clearly there are recursive sets which are not eventually periodic. �

Working backwards the proof of Theorem 25,24 we can isolate all the axioms
necessary to decide all sentences true in (N, 0, S,+, ∗, <). In particular, TPresb is
completely axiomatizable by:

(1) ¬0 = 1;
(2) ∀x∀y∀z(x+y = y+x)∧(x+(y+z)) = ((x+y)+z)∧(x+z = y+z =⇒ x = y);
(3) ∀xS(x) = x+ S(0);
(4) < is linear;
(5) ∀x∀y(x < y ⇐⇒ ∃z(z 6= 0 ∧ y = x+ z))
(6) for all n the axiom: ∀x∃y∃z

(
x = ny+ z ∧ (z = 0∨ z = 1∨ · · · ∨ z = n− 1)

)
.

A similar approach shows that the theory of ordered Abelian groups is also de-
cidable.

4. Computational complexity of decision problems

In Math117b we saw that there are various degrees of undecidability. Ranked
with respect to computable reductions they form the collection of all Turing degrees
{[α]T : α ∈ NN}. In this section we will develop a hierarchy of “tractability” within
the collection of all decidable problems, i.e., of problems whose Turing degree is the
smallest possible

˜
0. Tractable problems will be the ones which can be solved with

an algorithm which terminates in polynomial time. The righe notion of reduction in
this context is the polynomial-time reduction. Among other things we will see that
the decision problem for sentences of Presburger arithmetic is exponentially time
hard, i.e., highly untractable.

Let A be a finite alphabet. A language L is just any collection of words in A,
i.e., any L ⊂ A∗. We denote by |w| the length of the word w. Given a language L
and any function t : N→ N we say that L has time complexity t if there exists a

24 ARISTOTELIS PANAGIOTOPOULOS

Turing machine M on some alphabet B ⊇ A so that M has two distinguished states
QY , QN so that:

w ∈ L =⇒ on input w,M stops in at most t(|w|) steps on state QY ;

w 6∈ L =⇒ on input w,M stops in at most t(|w|) steps on state QN .

We say that M decides L in time t. Let P be the class of all tractable languages,
or polynomial time languages, i.e. all L which are decided in time p where p is
any polynomial. If L 6∈ P then we say that L is intractable.

Remark. In the proof of equivalence of the various models of computation
(Math117a) all the reductions introduced at most polynomial time slowdown. As a
consequence the above notion of tractability is robust.

Let now A,B be two alphabets and let f : A∗ → B∗. We say that f is a
polynomial-time function if there exists a Turing machine M on some alpha-
bet Σ ⊇ A∪B which always halts on input w ∈ A∗ and the output when it halts is
f(w). Let L ⊆ A∗ and R ⊆ B∗. We say that L is polynomial-time reducible to
R and we write L ≤P R if there exists a polynomial time function f with

w ∈ L ⇐⇒ f(w) ∈ R.

If L ≤P R then notice R ∈ P implies L ∈ P , and if L is intractable then so is R.

Definition 28. Let C be a collection of languages and let R ⊆ B∗. Then we say
that R is C-hard if for every L ∈ C we have that L ≤P R. If additionally R ∈ C
then we say that R is C-complete.

Here we will mostly focus on three classes: the class P of polynomial time lan-
guages, the class E =

⋃
c>0 TIME(2cn) of exponential time languages, and the

class NP of not-deterministic polynomial time languages which we are about to
define.

Definition 29. Let L ⊆ A∗. We say that L is a non-deterministic polynomial
time language, and we write A ∈ NP if there exists a Turing machine M on some
alphabet B ⊇ A

⋃
{#} and a polynomial p = p(n) so that for every w ∈ A∗ we have

that

w ∈ L ⇐⇒ ∃v ∈ B∗(|v| < p(|w|)) ∧M halts in ≤ p(|w|) steps on input w#v

We call the v above a verifier or certificate for w.

So NP languages are the ones for which there exists an algorithm which decides
them in polynomial time as long as it is fed the right “mini oracle.” Of course
there are |B|p(n)-many such “mini oracles” making NP languages potentially of
exponential time. It is clear that any problem in P is also in NP since one can
take the verifier to be θ in the above definition. One of the biggest open problems
currently is:

Prove or disprove that P 6= NP .

COMPUTABILITY III TOPICS IN COMPUTABILITY 25

Here are some examples of decision problems which are in NP :

Example. CLIQUE
Instance: an undirected graph G (in the form of an adjacency matrix fed row by

row) and a natural number N (fed in binary).
Question: does G have a clique of size N?

Example. PRIMES
Instance: a natural number N > 1 (fed in binary).
Question: is N prime?

Question: does G have a clique of size N?

Example. SAT
Instance: a finite set V = {v1, v2, . . . , vk} of propositional variables (fed in the

form vn where n binary) and a finite set C = {c1, . . . , cm} of clauses ci = ∨ni
j=1(vj)

εj

where the literals (vj)
εi are either variables or negations of variables.

Question: is there an assignment of truthvalues V → {>,⊥} which makes
m∧
i=1

ni∨
j=1

(vj)
εj true ?

Definition 30. A language L ⊆ A∗ is in the class co–NP iff A∗ \ L ∈ NP .

Theorem 31 (Cook-Levin). SAT is NP-complete.

Proof. It is clearly in NP . We leave this to the reader. So we are left to show that
it is NP-hard.

Let L ⊆ A∗ be in NP and let D = {v, 0, 1, |} be the alphabet of SAT where |
is used to separate between clauses and, say || will separate between the variables
and clauses (there are many ways to do it and we will not be so precise). We will
define a polynomial time f : A∗ → D∗ which reduces L to SAT. For that we will use
B,M, p from the definition of NP to define the right variables and clauses.

So let B ⊆ A ∪ {QY ,#}, then Turing machine M and the polynomial p = p(n)
associated to the “verifier algorithm” for L. Let Q0, . . . , Qm be the states of M with
Q0 initial and Qm terminal. We can also assume that all instructions which start
with Qm are of the form (Qm, b, b, , Qm).

Now w ∈ L with |w| = n if and only if M halts after p(n)-many steps on input
w#v with QY on the tape. So the head of the tape will not visit any cell past the
interval [−p(n), p(n)]. Let A = {σ1, . . . , σK}, A = {σ1, . . . , σK , σK+1, . . . , σL}, and
σ0 = #.

We associate to M the following variables which depend on n:

(1) Si,k where 0 ≤ i ≤ p(n), 0 ≤ i ≤ m;
(2) Hi,j where 0 ≤ i ≤ p(n),−p(n) ≤ j ≤ p(n);

26 ARISTOTELIS PANAGIOTOPOULOS

(3) Ti,j,l where 0 ≤ i ≤ p(n), 0 ≤ i ≤ m, 0 ≤ l ≤ L.

Here Si,k will be true if Qk is the state during the i-th step of the computation.
Hi,j will be true if the head is positioned on the j-th cell during the i-th step of the
computation. Ti,j,l will be true if at the i-th step of the computation, the j-th cell
reads σl.

To each input w = σk0 · · ·σkn−1 ∈ A∗, kr ∈ [1, K] we associate the following
clauses:

(1) • Si,0 ∨ · · · ∨ Si,m for every i (always in some state);
• ¬Ri,k ∨ ¬Ri,k′ for every i and all k 6= k′ (cannot occupy both states)
• Hi,−p(n) ∨ · · · ∨Hi,p(n) for every i (always in some cell);
• ¬Hi,j ∨ ¬Hi,j′ for every i and all j 6= j′ (cell is unique)
• Ti,j,0 ∨ · · · ∨ Ti,j,l for every i, j (scan at least one symbol);
• ¬Ti,j,l ∨ ¬Ti,j,l′ for every i, j and all l 6= l′ (symbols scanned is unique);

(2) • S0,0, H0,0, T0,j,kj for 0 ≤ j ≤ n− 1, T0,n,0 and T0,j,0 if j < 0 (initial);
(3) • Sp(n),m (positive halting position).
(4) for every instruction (Qk, σl, σl′ , s, Qk′) in M the right transitions, e.g. if

s = R then add for every i:
• ¬Si,k ∨ ¬Hi,j ∨ ¬Ti,j,l ∨ Si+1,k′ ;
• ¬Si,k ∨ ¬Hi,j ∨ ¬Ti,j,l ∨Hi+1,j+1;
• ¬Si,k ∨ ¬Hi,j ∨ ¬Ti,j,l ∨ Ti+1,j+1,l′ ;

So f(w) constitutes the above collection variables (for n = |w|) and the above
collection of clauses. Given B,M, p, all these data can be clearly extracted from w
in polynomial time. We are left to show that

w ∈ L ⇐⇒ f(w) ∈ SAT.

If w ∈ L then M halts in ≤ p(|w|)-time for input w#v and some some v with
|v| ≤ p(|w|). Now feed the computation of M in the above circuit by making the
associated variables true and notice that a terminating computation of M guarantees
the satisfiability of the circuit (if |v| + |w| + 1 > p(|w|) then we feed only the
(|v| − |w| − 1) -part of v in the T0,j,l’s. This will not affect the computation since
the tape cannot reach to the p(|w|) + 1 cell before time p(|w|)).

Conversely if the circuit is satisfiable then read from the T0,j,l’s the right v and
prove by an easy induction that M halts in p(|w|)-time (use (1)-(4) to read from the
circuit each step of the computation). �

4.1. More examples of NP-complete problems.

COMPUTABILITY III TOPICS IN COMPUTABILITY 27

Rather than proving from scratch each time, as in the case of SAT, that a problem
is NP-complete, we can instead polynomially reduce on it some problem which we
already know is NP-complete. We provide here several examples where this tech-
nique applies.

Example. 3-SAT
Instance: as in SAT one is given a finite set V of propositional variables and a finite
set C of clauses which are of the form xε ∨ yε ∨ zε.
Question: is there an assignment of truthvalues ∧mi=1(xεni

∨ yεni
∨ zεni

) true.

Theorem 32. 3-SAT is NP-complete.

Proof. It is clearly in NP . The mini oracles v here are simply assignment of truth-
values for the variables. If one is given a v which witnesses that the circuit w is
satisfiable then checking that this v indeed witnesses the satisfiability of w is of
polynomial complexity (in fact linear complexity). So we are left with showing that
it is NP-hard. Since is SAT is NP-hard it suffice to show:

SAT ≤P 3-SAT.

For the reduction let w be a word in the alphabet of SAT if w does not even
represent a circuit (variable set/clause set) let f(w) (this checking takes polynomial
time). Otherwise if w is a circuit we translate each clause of w to an equivalent
collection of clauses of size 3, defining this way f(w) as follows:

change each clause (x ∨ y) to the set (x ∨ y ∨ z), (x ∨ y ∨ z̄);
change each clause (x) to the set (x ∨ y ∨ z), (x ∨ y ∨ z̄), (x ∨ ȳ ∨ z), (x ∨ ȳ ∨ z̄);
change each clause (x1 ∨ · · · ∨ xn) to the set

(x1∨x2∨y1), (x3∨ ȳ1∨y2), (x4∨ ȳ2∨y3), . . . , (xn−2∨ ȳn−4∨yn−3), (xn−1∨xn∨ ȳn−3)

We leave to the reader to check that these are equivalent circuits from the point
of view of satisfiability and to confirm that the translation is done in polynomial
time. �

Example. SUBGRAPH ISO
Instance: Two finite graphs G1 = (V1, E1) and G2 = (V2, E2).
Question: Does G1 contain a subgraph isomorphic to G2, i.e, is there a subset W1

of V1 and a subset F1 of E1 such that the graph (W1, F1) is isomorphic to G2?

Theorem 33. SUBGRAPH ISO is NP-complete.

Proof. As before SUBGRAPH ISO is in NP . We show that it is NP-hard. By the
HW CLIQUE is NP-hard so it suffice to show

CLIQUE ≤P SUBGRAPH ISO.

This is clear since an instance G,N of CLIQUE directly translates to the instance
G1, G2 of SUBGRAPH ISO where G1 = G and G2 is the complete graph KN in N
vertexes. �

28 ARISTOTELIS PANAGIOTOPOULOS

Example. GRAPH COLOURABILITY
Instance: A graph G = (V,E) and k ≤ |V |.
Question: Is G k-colourable, i.e., can one assign to each vertex of G a number from
{1, . . . , k} so that E-adjacent vertexes are assigned different colours?

Theorem 34. GRAPH COLOURABILITY is NP-complete.

Proof. As before GRAPH COLOURABILITY is in NP . We show now that it is
NP-hard by polynomially reducing on it 3-SAT.

Let w = (X,C) be an instance of 3-SAT where X = {x1, . . . , xn} is a set of
variables and C = {F1, . . . , Fm} is a collection of 3-clauses. We map w to an instance
(G, k) of GRAPH COLOURABILITY as follows. Set k = n + 1 and consider the
graph G whose vertexes are (here the zi constitute a new set of points):

{z1, . . . , zn} ∪ {x1, . . . , xn} ∪ {x̄1, . . . , x̄n} ∪ {F1, . . . , Fm}

The edge relations are all the pairs of the form: (zi, zj) for i 6= j; (zi, xj) for i 6=
j; (zi, x̄j) for i 6= j; (xi, x̄i) ;(xi, Fj), (Fj, xi) whenever xi 6∈ Fj; (x̄i, Fj), (Fj, x̄i)
whenever x̄i 6∈ Fj. The assignment w 7→ f(w) sending (X,C) to the (G, k) above is
clearly computed in polynomial time. We are left with showing that it is a reduction.

If (X,C) is satisfiable under the truth assignment t : X → {>,⊥} then G is k-
colourable: use the colours {1, . . . , n} to color the complete graph {z1, . . . , zn} and
call the remaining color s. Look at xi, x̄i. There are connected between them so
they have to take different colours. Since they are connected with zj for i 6= j they
only colours they can get is either i or s. If t(xi) = > colour xi with i and x̄i with
s. Otherwise do the opposite. Each Fl now is of the form xεii ∨ x

εj
j ∨ x

εp
p with one

of the literals taking the truth value > under the assignment t. For the first such
literal, say i, color Fl by i. We leave it to the reader to check that this works.

Conversely, if (G, k) is k-colourable then by permuting the colors we can assume
that zi is coloured by i. Call again s the remaining colour and consider the assign-
ment t : X → {>,⊥} where t(xi) = > if and only if the color of xi is i. We leave it
to the reader to check that this works. �

Problem. TRAVELING SALESMAN
Instance: A collection C = {ci, . . . , cm} of cities, a distance function d(ci, cj) ∈
{1, 2, . . .} for i 6= j and bound B ∈ {1, 2, . . .}.
Question: Is there a tour of all the cities of total distance ≤ B, i.e., an ordering
cσ(1), . . . , cσ(m) so that the sum of the distance between consecutive cities (including
d(cσ(m), cσ(1))) at the end) is ≤ B?

It is clear that TRAVELING SALESMAN is in NP . We will show that it is
NP-complete with a series of reduction.

Problem. HAMILTONIAN CIRCUIT
Instance: A graph G = (V,E).
Question: Is there an (injective) ordering v1, . . . , vn−1 of V so that v1, . . . , vn−1, vn
where vn = v1 is a path?

COMPUTABILITY III TOPICS IN COMPUTABILITY 29

Theorem 35. HAMILTONIAN CIRCUIT is polynomial time reducible to TRAVELING SALESMAN.

Proof. Given G = (V,E) define (C, d,B) by C = V , d(vi, vj) = 1 if (vi, vj) ∈ E and
d(vi, vj) = 2 otherwise, B = |V |. �

We will now establish that the following problem known as VERTEX COVER is
NP-complete and then we will reduce it the HAMILTONIAN CIRCUIT(directed)
which we will further reduce to HAMILTONIAN CIRCUIT. As a consequence, all
these problems, together with TRAVELING SALESMAN are NP-complete.

Problem. VERTEX COVER
Instance: A graph G = (V,E) and a natural number k ≤ |V |.
Question: Is there some cover S in G of size k, i.e., some S ⊂ V of size k so that
every edge of G is incident to some v ∈ S?

Theorem 36. VERTEX COVER is NP-complete.

Proof. If S is given to us in the form of a mini oracle then checking that it is indeed
a cover of size k requires poly-time. So we are left to show that it is NP-hard. We
do this by polynomial-time reducing to it CLIQUE. By HW this suffices.

If G = (V,E), N is an instance of CLIQUE then consider the instance G′ =
(V ′, E ′), k of VERTEX COVER where k = |V | −N , V ′ = V and E ′ = V 2 \ E.

Notice that S ⊆ V is a clique in G if and only if V \ S is a vertex cover of G′. To
see this:

assume that S is a clique in G and let (u, v) ∈ E ′. Then (u, v) 6∈ E and since S
is a clique either u or v are in V \ S.

conversely assume that S is a not clique in G so there are u, v ∈ S with (u, v) 6∈ E.
So (u, v) ∈ E ′ with neither u, v in V \ S. So V \ S is not a cover. �

Theorem 37. VERTEX COVER ≤P HAMILTONIAN CIRCUIT(directed graph).

Proof. Given G = (V,E) and k ≤ V , we define a directed graph G′ = (V ′, E ′) as
follows. First let V = {v1, . . . , vn} and let eij = {vi, vj} whenever (vi, vj) ∈ E. We
will abuse notation and write e ∈ E for every e = eij as above. Let V ′ be the set

{a1, . . . , ak}
⋃
{(v, e, 0) | v ∈ V, e ∈ E, v ∈ e}

⋃
{(v, e, 1) | v ∈ V, e ∈ E, v ∈ e},

i.e., or every e = {v, w} ∈ E we include 4 vertexes in G′: (v, e, 0), (v, e, 1), (w, e, 0),
(w, e, 1). To describe the elements of E ′ fix any vi in V and let vj0 , vj1 , . . . , vjm be
all the neighbors of vi. Then for every vi like this and every l ≤ k add all arrows in
the following path:

al → (vi, ei,j0 , 0)→ (vi, ei,j0 , 1)→

→ (vi, ei,j1 , 0)→ (vi, ei,j1 , 1)→

→ · · · →

→ (vi, ei,jm , 0)→ (vi, ei,jm , 1)→ al

30 ARISTOTELIS PANAGIOTOPOULOS

Additionally, for all eij add (vi, ei,j, 0)←→ (vj, ei,j, 0) and (vi, ei,j, 1)←→ (vj, ei,j, 1).
The construction of G′ from G, k can be clearly computed in polynomial time. We
are left to show that it is a reduction.

Assume that v1, . . . , vk is a vertex cover of G. Consider the path

a1 → (v1, e
1
1,j10
, 0)→ (v1, e1,j10

, 1)→ · · · → (v1, e1,j1m1
, 0)→ (v1, e1,j1m1

, 1)→

a2 → (v2, e
2
1,j20
, 0)→ (v2, e2,j20

, 1)→ · · · → (v2, e2,j2m2
, 0)→ (v2, e2,j2m2

, 1)→
→ · · · →

ak → (vk, e
k
1,jk0

, 0)→ (vk, ek,jk0 , 1)→ · · · → (vk, ek,jkmk
, 0)→ (vk, ek,jkmk

, 1)→ a1

This path goes over everything exactly once except the vertexes (vj, e, 0), (vj, e, 1)
with j > k. But since {v1, . . . , vk} is a cover of G, each such e is of the form eij for
some i ≤ k. So we can modify the above path replacing (vi, eij, 0)→ (vi, eij, 1) with

(vi, eij, 0)→ (vj, eij, 0)→ (vj, eij, 1)→ (vi, eij, 1),

wherever appropriate.
Assume now conversely that G′ has a Hamiltonian circuit and write it as

a1 → · · · → a2 → · · · · · · · · · → ak → · · · → a1

The observation now is that for every i there exists some vi ∈ V so that every vertex
in the path above between ai, ai+1 is either of the form (vi, e, 0), (vi, e, 1) or of the
form (w, e, 0), (w, e, 1) where e = {vi, w}. This is because of the structure of the
graph and the way its vertex in V ′ is stamped with some e and either 0 or 1 (we
leave the details to the reader). It follows that {v1, . . . , vk} is a cover of G. �

Theorem 38. We have that

HAMILTONIAN CIRCUIT(directed graph) ≤P HAMILTONIAN CIRCUIT.

Proof. We leave this as a HW. �

4.2. Some polynomial time problems. As we pointed out in the HW there is
an algorithm solving PRIME in polynomial time. Here we provide with proof a
couple of problems which are also solvable in polynomial time. Most importantly
the 2-SAT. We start with the following simple problem.

Problem. GRAPH CONNECTEDNESS
Instance: A (possibly directed) graph G = (V,E).
Question: Is G connected?

Theorem 39. GRAPH CONNECTEDNESS is in P.

Proof. Given any u, v ∈ V one can decide whether there is a path from u to v in
polynomial time:

Step 1: mark u;
Step k + 1: if there is an edge from an already marked x to some unmarked y, mark y;

Step |V |: stop and answer YES if v is marked.

COMPUTABILITY III TOPICS IN COMPUTABILITY 31

By induction on the shortest path from u to v we can easily check correctness. It is
also clear that the algorithm stops in less than or equal to |V |3 time.

The algorithm for the main problem is to check for all pairs u, v whether there is
either a path from u to v or from v to u.

�

Problem. 2-SAT
Instance: as in SAT one is given a finite set V of propositional variables and a finite
set C of clauses which are of the form xε ∨ yε.
Question: is there an assignment of truthvalues ∧mi=1(xεni

∨ yεni
) true.

Theorem 40. 2-SAT is in P.

Proof. It suffice to show that ¬(2-SAT) polynomially reduces to a subproblem of
GRAPH CONNECTEDNESS.

Let V = {v1, . . . , vn}, C be an instance of 2-SAT. We will denote by x, y, z, . . .
the literals of V . If x = ¬vi then by ¬x we mean vi. Consider the directed graph
GC = (VC , EC) whose vertexes are all literals in V , i.e., VC consists of:

v1, . . . , vn,¬v1, . . . ,¬vn
For any two literals x, y we draw an arrow x→ y if and only if ¬x∨ y is in C. This
defines EC and therefore GC in a polynomial manner with respect to V,C. The rest
follows from the following claim:

Claim. (V,C) is not in 2-SAT if and only if there exists some variable v ∈ V so
that within GC there is a path from v to ¬v and a path from ¬v to v.

The one direction is easy: if in GC there is a path from x to y, t : V → {>,⊥}
is a witness to the satisfiability of C and t(x) = > then t(y) = >. Since in such t
we have that precisely one of t(v), t(¬v) is >, any path from it to the other would
imply that both are >, a contradiction.

We leave the converse as an exercise.
v → x since that would give a path from v → ¬x and ¬x → ¬¬v, i.e., from v

to ¬v, contradicting the definition process of tk+1(v). Moreover if tk+1(v) = > and
tk(z) =⊥ we cannot have a path from v to z since this would give a path from ¬z
to ¬v with tk(¬z) = > and therefore tk would had been already defined to be ⊥ on
z (similarly for the case where tk+1(¬v) = >).

�

4.3. Deciding Presburger arithmetic is exponential-hard. Recall that by
Presburger Arithmetic we mean the complete theory TPresb of (N, 0, S,+, <). We
have seen that TPresb is decidable, i.e., given any sentence σ in L = {0, S,+, <} there
is an algorithm deciding whether σ ∈ TPresb, or equivalently, whether

(N, 0, S,+, <) |= σ.

32 ARISTOTELIS PANAGIOTOPOULOS

One could ask whether there is an efficient algorithm deciding TPresb. Here we will
show that the problem of deciding TPresb is highly intractable. Recall the complexity
class E =

⋃
c>0 TIME(2cn) of all exponential time languages. We have:

Theorem 41. TPresb is E-hard.

We devote the rest of this subsection to a proof of this theorem. Let L ⊆ A∗ be a
language with L ∈ TIME(2cn) for some c > 0. We will describe a polynomial time
computable assignment w 7→ σw of each w ∈ A∗ to some sentence σw so that

w ∈ L ⇐⇒ σw ∈ TPresb.

We view here TPresb as language in a finite alphabet which contains symbols for L as
well as the usual symbols for first order logic. To keep the alphabet finite we code
the variable xn with the finite string xnbin where nbin is the binary expansion of n.

Let L ∈ TIME(2cn), we can find a Turing machine M on some alphabet B ⊇ A
so that M on input w reaches the state QY on time 2cn if and only if w ∈ L. Set
b0 = #, b1 = ∗, B = {b2, . . . , bq} and let {Qq+1, . . . Qp−1} be the collection of all
states of M with Qp−1 = QY .

Since M terminates in at most 2cn steps we can restrict attention to the interval
[−2cn, 2cn] of the tape. In fact it will be convenient to have the head start at the cell
2cn instead and let [0, 2cn+1] be the pertinent interval. Using b1 = ∗ for the blanks
of the tape we can keep track of every situation description by the word:

bi0bi1 . . . bik−1
Qjbik . . . bi2cn+1

implying that M is in the state Qj with the head reading bik . Using the letter b0 = #
as a separator we can represent any computation of length ≤ 2cn by another word:

x ≡ #c0#c1# · · ·#c2cn ,

where every ci is a situation description as above. Replacing bi with simply i and
Qj with j we can code the above word x with a single natural number:

x = q0q1 · · · qt = Σt
j=0kjp

j, where kj < p.

Here t+ 1 = (2cn + 1) + (2cn + 1)(2cn+1 + 2) and therefore x < pt+1 < 22dn for some
fixed d > 0 which only depends on c. Given now w ∈ A∗ with |w| = n we have that:

w ∈ L ⇐⇒ ∃x ∈ N
(
x < 22dn and x codes a computation with input w stopping at QY

)
⇐⇒ ∃xPw(x).

Task. Our task now is to find a formula ϕw in L so that w 7→ ϕw is polynomial and

(N, 0, S,+, <) |= ϕw(x) if and only if Pw(x) holds.

This would finish the proof since w 7→ σw := ∃xϕw(x) would be the desired reduction
showing that L ≤P TPresb.

COMPUTABILITY III TOPICS IN COMPUTABILITY 33

We now proceed to show that Pw(x) is indeed definable in (N, 0, S,+, <). First
let Φ(x, p, i) be the i-th digit of x when x is written in p-ary expansion. We have:

Pw(x) ⇐⇒
(
x < 22dn

)
∧
(
∀i ≤ 2cn Φ(x, p, i(2cn+1 + 3)) = 0

)
∧

∧
(
∀i ≤ 2cn ∀j, with 0 < j ≤ 2cn+1 + 2, Φ(x, p, i(2cn+1 + 3 + j)) > 0

)
∧

∧
(
describe transitions ci → ci+1 and termination

)
∧

∧
(
∀k < |w|Φ(x, p, (2cn + 2 + k)) = ik

)
, where w = bi0 · · · bik · · · bi|w| .

In order to capture Pw(x) with a poly-time computable formula ϕw(x) we need to
define in (N, 0, S,+, <) the following expressions in polynomial time from n = |w|:

(1) An(x) ↔ x < 2n;
(2) Bn(x) ↔ x < 22n ;
(3) Mn(x, y, z) ↔ (x < 22n) ∧ (x · y = z);
(4) En(x, y, z) ↔ (x, z < 22n) ∧ (yx = z);
(5) Dn,p(x, y, z) ↔ (x < 22n) ∧ (y < 2n) ∧ (Φ(x, p, y) = z);

The reader should observe that we are doing a similar coding with the one we did for
proving incompleteness in full arithmetic. Of course the theory here is decidable so
we cannot do the full Gödel coding. The reason being that we cannot define multi-
plication and therefore exponentiation and neither the full function (Φ(x, p, y) = z).
For the result we seek to prove though we only need “bounded” versions of these
operations which we can define (as we will see) in Presburger arithmetic.

We first point out that it suffice to show that En(x, y, z) and Mn(x, y, z) are
defined by a poly-time computable formula since:

An(x) ⇐⇒ ∃z(En(n, 2, z) ∧ x < z), Bn(x) ⇐⇒ Mn(x, 0, 0), and

Dn,p(x, y, z) ⇐⇒ Bn(x)∧An(y)∧
(
∃q ∃r (x = q·py+1+z ·py+r)∧(r < py)

)
⇐⇒ . . .

We show now that Mn(x, y, z) is definable by a formula in poly-time by induction.
(n = 0)-case. M0(x, y, z) ≡ (x = 0 ∧ z = 0) ∨ (x = 1 ∧ z = y).
(n = k + 1)-case. Assume we have defined Mk(x, y, z) in poly-time (we know

how to multiply when x < 22k). We will define Mk+1(x, y, z) (we will learn how to

multiply when x < 22k+1
). If x < 22k+1

then
√
x < 22k and therefore b

√
xc < 22k .

Set x1 = b
√
xc. We have that x = x1 + w for some w and x < (x1 + 1)2. Therefore

x2
1 + w < x2

1 + 2x1 + 1, so w ≤ 2x1, i.e., x = x2
1 + x2 + x3 where x2, x3 ≤ x1 < 22k .

Consequentially we have that xy = x1(x1y) + x2y + x3y and therefore:

Mk+1(x, y, z) ⇐⇒ (x < 22k+1

) ∧ (x · y = z) ⇐⇒ ∃x1x2x3∃u∃w1w2w3((
(x = x1 + x2 + x3) ∧ (z = w1 + w2 + w3) ∧ (x2 ≤ x1) ∧ (x3 ≤ x1) ∧ (x1 < 22k)

)
∧(

(w2 = x2 · y) ∧ (w3 = x3 · y) ∧ (w1 = x1 · u) ∧ (u = x1 · y)
))

which can be entirely rewritten using the already defined Mk. However at this point
it still seems that the length of the definition of Mk+1 is ruffly 4-times the length of

34 ARISTOTELIS PANAGIOTOPOULOS

the definition of Mk. This would make the computation of Mn exponential. But we
can rewrite the above as follows:

⇐⇒ ∃x1x2x3∃u∃w1w2w3((
(x = x1 + x2 + x3) ∧ (z = w1 + w2 + w3) ∧ (x2 ≤ x1) ∧ (x3 ≤ x1) ∧ (x1 < 22k)

)
∧(

Mk(x2, y, w2) ∧Mk(x3, y, w3) ∧Mk(x1, u, w1) ∧Mk(x1, y, u)
))

⇐⇒
⇐⇒ ∃x1x2x3∃u∃w1w2w3((

(x = x1 + x2 + x3) ∧ (z = w1 + w2 + w3) ∧ (x2 ≤ x1) ∧ (x3 ≤ x1) ∧ (x1 < 22k)
)

∧
∀r, s, t

(
(r, s, t) ∈ {(x2, y, w2), (x3, y, w3), (x1, u, w1), (x1, y, u)} =⇒ Mk(r, s, t)

))
The length of this formula Mn has now polynomial dependence on n. However it
seems that going from k to k+1 we are forced to introduce new variables r, s, t each
time so the length of the expressions still grows rapidly (but at least polynomially
rapidly). However there is a way to define Mk(x, y, z) using uniformly the following
fixed collection of variables: x, y, z, x1, x2, x3, u, w1, w2, w3, r

′, s′, t′. This makes the
rate of growth linear!

COMPUTABILITY III TOPICS IN COMPUTABILITY 35

5. A closer look on complexity

In the previous section we showed that the decision problem of Presburger arith-
metic is E-hard. However this does not imply, apriori, that the problem is in-
tractable. For all we know the collections E and P make contain precisely the same
languages. Here we establish that this is not the case. Then we place our attention
to another notion of complexity which measures the space, rather than the time,
needed for a certain problem to be decided. We finally show that, for Turing ma-
chines which have access to oracles, whether P 6= NP or P = NP holds depends
on the oracle.

It will be convenient to change slightly the model of computation we use by
allowing the Turing machine to have multiple tapes. We will leave it to the reader to
check that the translation between single tape and multiple tape model introduces
at most quadratic slow down in time and therefore it will not affect the coarse
complexity bound we are interested in.

A k-string Turing machine M (k ≥ 1) is defined as a usual Turing machine by
specifying its alphabet Σ, its collection of states Q0, . . . , Qp (with Q0 initial and Qp

terminal) and its transition function δ where

δ : {Q0, . . . , Qp} × Σk → Σk × {left, right, stay}k × {Q0, . . . , Qp}.
In other words, there are k-many heads each reading some cell of some of the k-
tapes. We will assume always that the input is placed at the first (the 0th) tape
and the output at the last (the (k − 1)th) tape

Given a function f : N→ N we say that a computation halts in O(f(n)) if there
are a, b > 0 so that the computation halts in less than a · f(n) + b time.

Exercise 42. Given a k-string Turing machine M which always halts in less than
f(n) time describe a Turing machine M ′ which always halts with the same output
as M on the same input but in time O(f 2(n))

5.1. The hierarchy theorem. In this subsection the time complexity is always
measured with respect to a k-string Turing machines. In other words, a language
Σ ⊆ A∗ belongs to some time complexity class if and only if there is some k and
some k-string Turing machine M that decides this problem within the specified time
constrains.

Let f : N→ N be any map. We say that f is a proper complexity function if
f(n) ≥ n, f(n) is non-decreasing, and there exists some k-string Turing machine on
alphabet Σ with 1 ∈ Σ so that for any input x with |x| = n M halts in TIME(f(n))
time with output

n−times︷ ︸︸ ︷
11 · · · 11

Theorem 43 (Time Hierarchy Theorem). If f is a proper complexity function then

there exists a language L whose decision problem is in TIME(
(
f(2n+ 1)

)3
) but not

in TIME(f(n)).

36 ARISTOTELIS PANAGIOTOPOULOS

Before we proceed to the proof we point out the following immediate corollary.

Corollary 44. The class E is strictly larger than P, and therefore, the decision
problem for the theory of Presburger arithmetic is intractable.

Proof of Corollary. In the context of Exercise 42 it follows immediately from the
Time Hierarchy Theorem since 2n is easily seen to be a proper complexity function.

�

We now turn into the proof of the Time Hierarchy theorem. Let f be a proper
complexity function and consider the following bounded version of the halting prob-
lem which we view as a language Hf in the alphabet A = {0, 1, (,), ; }:

Hf = {M ;x |M is a k-string TM which accepts x in at most f(|x|) steps}.

One can code the states and the alphabet of the Turing machine M with natural
numbers in binary (for each M use strings of 0, 1 of some fixed large enough length
in order to code states and alphabet). Similarly the transition function can be coded
using tuples (use parenthesis and ; instead of comma) so the alphabet A is enough
for the coding.

The Time Hierarchy theorem follows from combining the next two lemmas under
the obvious re-parametrization.

Lemma 45. The decision problem for Hf is in TIME(
(
f(n)

)3
).

Proof. HW. �

Lemma 46. The decision problem for Hf is not in TIME(f(bn
2
c)).

Proof. Assume towards contradiction that there is some k-string Turing machine N
which on input M ;x decides Hf in TIME(f(bn

2
c)) consider the usual antidiagonal-

izing machine D which takes as input descriptions of Turing machines M , then calls
N with input M ;M , and then accepts M if and only if N rejects M ;M . Notice
that D, on input M , runs in the same time as N on input M ;M . That is if |M | = n
then D needs f(b2n+1

2
c) = f(n).

As usual we come into contradiction by asking whether D;D ∈ Hf : if the answer
is yes then D accepts D in f(n); i.e., N rejects D;D in f(bn

2
c) ≤ f(n), and therefore

D;D 6∈ Hf . Similarly for the other direction. �

5.2. Space and non-deterministic space complexity. This k-string Turing ma-
chine model allows us to measure complexity in terms of another resource, i.e., space.
How many cells of tape are necessary for deciding a language. When counting the
number of cells we want to exclude the cells used to write the input and the output.
We do that as follows. A restricted k-string Turing machine is just a k-string
Turing machine with k ≥ 2 so that the input tape (0th) is read only and the output
tape ((k − 1)th) is write only. That is, on the first tape the transition function δ
can never replace any symbol with another, and in the last tape, δ can order the

COMPUTABILITY III TOPICS IN COMPUTABILITY 37

head to go only to {right, stay} excluding “left”. We call the tapes 1, 2, . . . , k − 2
the work tapes.

We say that some language L ⊆ A∗ is of space complexity f(n) and write
L ∈ SPACE(f(n)) if there is a restricted k-string Turing machine M so that for
every x ∈ A∗ there are f(|x|)-many cells of the work tape (which we call free work
space) so that accepts x after a computation which only used the free work space
from the work tapes if x ∈ L; and M rejects x after a computation which only
used the free work space from the work tapes if x 6∈ L. Here we will care about
the class PSPACE of all languages which can be decided in SPACE(p(n)) for some
polynomial p.

One can also define the non-deterministic analogue of SPACE complexity (al-
though we will not use it): introduce another tape, say the tape (−1), on which
an arbitrary long finite “verifier” (or “mini-oracle”) can be placed and impose two
restrictions on this tape so that we cannot use it to “cheat” with respect to space.
The first restriction is that this tape, as in the case of the 0th tape, is read only.
The second restriction is that, as in the case of the (k − 1)th tape, the head each
time moves only {right, stay} and never “left”. So as the computations proceeds we
cannot recover the history of the tape except the part that we copy on the work tape
(which requires from us to have more free work space in the work tapes). Call such
a Turing machine non-deterministic restricted k-string Turing machine.

A language L ⊆ A∗ is in NPSPACE if there is non-deterministic restricted k-
string Turing machine M in some alphabet Σ ⊇ A and a polynomial p(n) so that
for every x ∈ A∗ there is a “mini-oracle” y ∈ Σ∗ so that M accepts (x, y) using at
most p(|x|) free work space (from tapes 1, 2, . . . , k − 2), if and only if x ∈ L.

Interestingly one can prove the following theorem.

Theorem 47. PSPACE = NPSPACE

The proof of this theorem goes through the next lemma. Recall the following
problem which implicitly appeared in the proof of Theorem 39.

Problem. REACH(G, s, t)
Instance: A directed graph G = (V,E) together with s, t ∈ V .
Question: Is there a path from s to t?

The procedure we described there uses, worst case, |V | amount of space to work
because it has to keep track of the “marked” vertexes.

Theorem 48. Let g : N → N be a function with g(n) ≥ log(n). Assume we are
given G = (V,E), s, t ∈ V and l ∈ N so that deciding ”is there an edge between
v, w ∈ V ” can be achieved in O(g(n)) space (where n is the length of the coding of
G,S, t, l). Then we can decide ”is there a path between s, t of length at most l” can
be achieved in O

(
g(n) log(l)

)
space.

38 ARISTOTELIS PANAGIOTOPOULOS

We will use the fact that there is a language L that is PSPACE-complete.
Problem. HALT WITHOUT EXPANSION(M,x)

Instance: A (usual single-tape) Turing machine M and an input x.
Question: Does M accepts x by a computation which uses no more tape then the
cells that were initially occupied by x?

Theorem 49. HALT WITHOUT EXPANSION(M,x) is PSPACE-complete.

Proof. HW �

5.3. P =? NP depends on oracles. In this subsection we assume that all lan-
guages are given in the alphabet A = {0, 1}. This will not impose any restrictions
since any other language in any finite alphabet B reduces in linear time to a lan-
guage in A. By an oracle R we mean any subset of A∗. One can of course fix an
effective enumeration of A∗ with N and identify oracles R, in the above sense, with
α ∈ NN. However, in this context it is more natural to work directly with R.

A usual (or a k-string Turing machine/restricted k-string Turing machine) Turing
machine M = M [·] is an oracle machine if it has an additional tape, the query
tape and a special state Q? which functions as follows: first we attach M to some
oracle R to get M [R]; then M [R] runs according the usual instructions; if at some
point the state Q? is reached the we ask the oracle if the string written in the query
tape is in R, if yes then string in the query tape gets replaced by a single 1, if not
by a single 0. This latter operation of asking the oracle costs a single unit of time.

Convention. Whenever we write a property about M [] without specifying an
oracle we mean that this property holds for all possible oracles.

In the presence of some fixed oracle R we can define the various complexity classes
such as P and NP as follows:
• PR is the collection of all languages L ⊆ A∗ for which there exists an oracle

machine M [] and a polynomial p so that for all x ∈ A∗, M [R] halts for input x in
at most time p(|x|) and it accepts x if and only if x ∈ L.
• NPR is the collection of all languages L ⊆ A∗ for which there exists an oracle

machine M [] and a polynomial p so that for all x ∈ A∗ and every y ∈ A∗, M [R]
halts for input x#y in at most time p(|x|) time and

x ∈ L ⇐⇒ ∃y ∈ A∗ |y| < p(|x|) so that M [R] accepts x#y.

Theorem 50. There are oracles S, T ⊆ A∗ so that:

PS = NPS and PT 6= NPT .

We start by proving the first part of this theorem. For S take any language that is
PSPACE-complete. For example one can take the language of Theorem 49 (coded
in binary which can always be done in linear time). Since for every oracle R we have
that PR = NPR, it suffices to show that NPS ⊆ PS. To see this notice that

(Claim:) NPS ⊆ PSPACE and PSPACE ⊆ PS

COMPUTABILITY III TOPICS IN COMPUTABILITY 39

Proof of Claim. Let L ⊆ A∗ be in NPS and let M [] be the oracle machine and p(n)
the polynomial with x ∈ L if and only if ∃y ∈ A∗ |y| < p(|x|) so that M [S] accepts x#y
in p(|x|) time. Consider now the restricted 5-tape Turing machine N which has two
work tapes besides 1, 2, 3 besides the input tape 0 and the output tape 4. Given the
input x the machine N produces the first y = y1 ∈ A<p(n) (chose here any enumera-
tion) in tape 1. Then it uses tape 2 to imitate the computation of M []. If M [] asks
at some point the oracle S about a certain string w then N uses the tape 3 to solve
whether w ∈ S.

Each such y1 takes p(|x|) space in tape 1, p(|x|) time and therefore p(|x|) space
in tape 2 and p′(|x|) space to solve each of the polynomialy many questions of the
form w ∈ S in tape 3, where p′(n) depends on p(n) and the polynomial q(n) which
bounds the space complexity of solving S on a single tape machine. If y1 rejects
reuse the same space to try y2. Total space needed: 2p(n) + p′(n). So we have:

NPS ⊆ PSPACE

The other inclusion is easy: if L ⊆ A∗ is an problem in PSPACE then there is a
polynomial time reduction f : A∗ → A∗ of L to S since S is PSPACE-complete. Let
Nf be the Turing machine that computes this reduction and turn in into an oracle
machine N ′f [] which after the reduction asks the oracle about f(x). Then N ′f [S]
decides L in polynomial time. �

This finishes the first part of the proof of Theorem 50. Out next task is to find
an oracle T so that PT 6= NPT .

First to each oracle R ⊆ A∗ we associate the language LR with

LR = {1n | ∃w ∈ R |w| = n} = {1n | R ∩ An 6= ∅}.
We will construct some T for which LT ∈ NPT \PT . It is immediate that for every
T the language LT is in NPT . So just need to find some T with the property that
LT 6∈ PT . Next lemma is a warm-up:

Lemma 51. Let M [·] be an oracle machine which halts in polynomial time. Then
there exists some oracle R ⊆ A∗ so that LR is not decided by M [R].

Proof. Let p be the polynomial which bounds the halting time of M and let k be
the first natural number with 2k > p(k). We will define R so that

M [R] accepts 1k ⇐⇒ R ∩ An = ∅.
We define R by specifying for every w ∈ A∗ whether w ∈ R as follows:

(1) if k < |w| chose either w ∈ R or w 6∈ R, it doesn’t matter;
(2) if k < |w| ≤ p(k) chose either w ∈ R or w 6∈ R, again it doesn’t matter;
(3) for |w| = k: having fixed choices for (1), (2) above we run M [·] with oracle

the partially defined R and input 1k. If at some point during the computation
M [·] asks whether w ∈ R where |w| = k then we extend the definition of R
so that w 6∈ R. We keep on doing this for all questions “w ∈ R?” where
|w| = k we encounter. Since M [·] halts in p(k) time it will never be able to

40 ARISTOTELIS PANAGIOTOPOULOS

ask questions “w ∈ R?” where |w| > p(k). Hence info we provided in (1),
(2), (3) is enough for the computation of M [R] to halt for input 1k. But
now notice that since there are at most p(k) many questions “w ∈ R?” and
2k > k there is at least some wR ∈ Ak for which M did not ask whether
“wR ∈ R”. It M [R] accepted 1k then put w 6∈ R for all w ∈ Ak. Otherwise
if M [R] rejected 1k put wR ∈ R;

(4) if |w| > p(k) as in (1), (2) do whatever you want. We separated this case to
emphasize (for later) that the choices of step (3) do not depend on step (4)

This concludes the proof of the lemma. �

Exercise 52. Finish the proof of “there is T such that PT 6= NPT”. If you prefer
try showing something stronger. Namely, that for the generic oracle T ⊆ {0, 1}∗ we
have PT 6= NPT (see HW 6).

COMPUTABILITY III TOPICS IN COMPUTABILITY 41

6. A combinatorial sentence not provable from Peano arithmetic

We will prove that a certain true combinatorial statement known as the Paris-
Harrington principle is not provable from Peano arithmetic. Before we get into the
proof of this negative result we will review some finite and infinite combinatorics
and provide an application.

6.1. The Ramsey theorem and the Paris-Harrington principle. In what fol-
lows we will often identify n with the set {0, . . . , n − 1} of all its predecessors. If
X is any set and k ∈ N then we denote by [X]k the set of all k-sets of X, i.e. all
subsets of X of size k. Recall Ramsey’s theorem.

Theorem 53 (Finite Ramsey theorem). For every a, b ∈ N and every r ∈ N there
is c ∈ N so that

c→ (b)ar ,

where c→ (b)ar stands for:
“for every f : [c]a → r there is X ⊆ c with |X| ≥ b so that f is constant on [X]a”

The Paris-Harrington principle is a slight strengthening of Ramsey’s theorem.

Theorem 54 (Paris-Harrington principle). For every a, b ∈ N and every r ∈ N
there is c ∈ N so that

c→ (b)ar ,

where c→∗ (b)ar stands for:
“for every f : [c]a →∗ r there is X ⊆ c with |X| ≥ b and |X| ≥ minX, so that f

is constant on [X]a”

Both statements follow from the infinite Ramsey theorem which is a theorem of
set theory. Notice that the infinite Ramsey theorem cannot be stated in first order
arithmetic. It is a homework exercise to show that both the finite Ramsey statement
and the Paris-Harrington principle can be expressed in first order arithmetic.

Theorem 55 (Infinite Ramsey theorem). For every a ∈ N and every r ∈ N we have

N→ (N)ar ,

where N→ (N)ar stands for:
“for every f : [N]a → r there is an infinite X ⊆ c so that f is constant on [X]a”

Proof. To be added. �

Proof of Theorems 53 and 54 from Theorem 55. To be added. �

42 ARISTOTELIS PANAGIOTOPOULOS

6.2. Indiscernibles. Ramsey type of results allow us to some hidden structure
within model theoretic structures.

Let M be a structure and let I be a set indexing some collection {ai | i ∈ I} of
elements of M . We say that (ai)i∈I is an indiscernible sequence inM if for every
formula ϕ(x1, . . . , xm) and every i1, . . . , im, j1, . . . , jm ∈ I we have that

M |= ϕ(ai1 , . . . , aim) ⇐⇒ ϕ(aj1 , . . . , ajm).

Any basis in a vector space forms an indiscernible sequence. However there are
theories T which have no models containing infinite sequences of indiscernibles (with
ai 6= aj). Such is the theory of linear orders since ai < aj =⇒ aj 6< ai . Interestingly
that is the only obstruction to having indiscernibles.

LetM be a structure and let (I,<) be an ordered set indexing some collection {ai |
i ∈ I} of elements of M . We say that (ai)i∈I is a sequence of order indiscernibles
in M if for every formula ϕ(x1, . . . , xm) and every i1 < . . . < im, j1 < . . . < jm ∈ I
we have that

M |= ϕ(ai1 , . . . , aim) ⇐⇒ ϕ(aj1 , . . . , ajm).

Theorem 56. Let T be a theory having infinite models. Then, for any linearly or-
dered set (I,<) there isM |= T and a sequence (ai)i∈I in M of order indiscernibles.

Proof. Let L′ = L ∪ {ci | i ∈ I} and consider the theory T ′ containing:

(1) every axiom in T ;
(2) ci 6= cj for all i 6= j;
(3) ϕ(ai1 , . . . , aim) ⇐⇒ ϕ(aj1 , . . . , ajm) for every formula and all i1 < . . . < im,

j1 < . . . < jm ∈ I.

The L-reduct M of any model M′ of T ′ satisfies the conclusion of the theorem.
Hence we need to show that T ′ is satisfiable. By compactness, it suffices to show
that every finite subset of T is satisfiable.

Let S be a finite subset of T ′ and let J be a finite subset of I so that if cj appears
somewhere in S then j ∈ J . Let also {ϕ1, . . . , ϕn} be the subset of T ′ containing
all formulas which appear in the axioms of type (3). We will assume without loss
of generality that all these ϕi are in the same set of variables x1, . . . , xm (one can
insert dummy variables if necessary).

Let now N be any infinite model of T and fix any linear order < on N . Consider
the the coloring r : [N]m → 2n with

r(ai1 < . . . < aim) = χA,

where A = {k < n | N |= ϕk(ai1 , . . . , aim)}. By the infinite Ramsey theorem (the
finite would also suffice) we get an infinite subset L of N so that r is constant on
[L]m. Pick |J | many elements of L and label them by the (cj)j∈J . This produces
a structure N ′ in the language L ∪ {cj | j ∈ J} with N ′ |= S, showing that T is
indeed finitely satisfiable. �

To prove the that the Paris-Harrington principle is independent of Peano arith-
metic we will need to show that it implies existence of a certain stronger form of

COMPUTABILITY III TOPICS IN COMPUTABILITY 43

indiscernibles for models of Peano arithmetic. First we need to show that it implies
another combinatorial principle.

Definition 57. Let X ⊆ N and let f : [X]n → N be any map. We say that f is
regressive if for all A ∈ [X]n we have that f(A) < minA. A subset Y of X is said
to be min-homogeneous for f if for every A,B ∈ [X]n with min(A) = min(B)
we have that f(A) = f(B).

If s < t in N we will denote by [s, t] and by (s, t) the sets {s, s + 1, . . . , t − 1, t}
and {s + 1, . . . , t − 1} respectively. Consider the following combinatorial principle
which we will refer to by principle (?).

(?) for all a, b, s, k ∈ N there is c ∈ N so that if f1, . . . , fk : [c]a → c are regressive,
then there is Y ⊆ (s, c) with |Y | ≥ b and Y is min-homogeneous for all fi.

We will prove that the Paris-Harrington principle implies principle (?). Moreover,
it will be important that our proof for “Paris-Harrington principle implies principle
(?)” will be formalizable in Peano arithmetic.

Lemma 58. Assume the Paris-Harrington principle. Then for all a′, b′, s′, r′ ∈ N
there is c′ ∈ N so that for all g : [c′]a

′ → r′ there is Y ⊆ (s′, c′) with |Y | ≥ b′ + a′,
|Y | ≥ minY + a′ + 1 and g is constant on [Y]a

′
.

Proof. We could try to use Paris-Harrington for the same a, r and for b = b′+a′+s′.
The set Y we would get, would satisfy Y ⊆ (s′, c′) and |Y | ≥ b′ + a′ but not
necessarily |Y | ≥ minY + a′ + 1 in general. We need a further trick.

Let c be the number given by Paris-Harrington for a, b, r with a = a′, r = r′ + 1
and b = b′ + 2a′ + s′ + 1. So for every f : [c]a → r′ + 1 there is Z with Z ≥
b′ + 2a′ + s′ + 1,minZ so that f�[Z]a is constant.

We claim that setting c′ to be this c does the job. To see this let g : [c′]a
′ → r′ be

any coloring and consider a new coloring f : [c′]a
′ → r′+1 so that f({y1, . . . , ya}) = r′

if yi < a′ + s′ + 1 for some i, and f({y1, . . . , ya}) = g({y1 − a − 1, . . . , ya − a − 1})
otherwise. We get Z so that f�[Z]a is constant and Z ≥ b′+2a′+s′+1,minZ. Since
Z ≥ b′+2a′+s′+1 there are some y1, . . . , ya ≥ a′+s′+1 so the f�[Z]a is not constantly
equal to r′ but constantly equal to something less than r′. As a consequence all y ∈ Z
have the property that y > a′+ s′+ 1 so letting Y = {z− a′− 1 | z ∈ Z} we get the
desired set: |Y | ≥ b′+2a′+s′+1, Y ⊆ (s′, c) and |Y | = |Z| ≥ minZ ≥ minY +a′+1
and g�[Y]a

′
is constant. �

Lemma 59. The previous lemma implies the (?)-principle. That is, for all a, b, s, k ∈
N there is c ∈ N so that if f1, . . . , fk : [c]a → c are regressive, then there is X ⊆ [s, c)
with |X| ≥ b and X is min-homogeneous for all fi.

Proof. Let c = c′ where c′ is attained from the previous lemma by setting a′ =
a + 1, s′ = s, b′ = b and r′ = 3k. For the rest of the proof we just check that this c
does the job we want.

44 ARISTOTELIS PANAGIOTOPOULOS

Assume that f1, . . . , fk : [c]a → c are regressive and define g1, . . . , gk : [c]a+1 → c
as follows: for every i and every A = {a0 < a1 < a2 < . . . < an−1 < an}

gi(A) = 0 ⇐⇒ fi({a0, a1, . . . , an−1}) = fi({a0, a2, . . . , an})
gi(A) = 1 ⇐⇒ fi({a0, a1, . . . , an−1}) < fi({a0, a2, . . . , an})
gi(A) = 2 ⇐⇒ fi({a0, a1, . . . , an−1}) > fi({a0, a2, . . . , an})

Combining them we have a single g : [c]a+1 → 3k and therefore from the previous
lemma we get Y ⊆ (s, c) with g�[Y]a+1 constant and |Y | ≥ minY + a+ 1, a+ b

Claim. gi(A) = 0 for all A ∈ [Y]a+1 and all gi.
To see this let {y0 < y1 < . . . < yl} be an enumeration of Y . For all j ∈
{1, . . . , l− a+ 1} let ȳj = (yj, yj+1, . . . , yj+a−1). Since fi is regressive, fi(y0ȳj) < y0.

So we have l−a+1 many sets of the form y0ȳj and only y0 many slots for fi(y0ȳj),
where y0 = minY ≤ |Y | − a − 1 = l + 1 − a − 1 = l − a. By pigeonhole principle
there are two tuples y0ȳj, y0ȳj′ so that fi(y0ȳj) = fi(y0ȳj′) and since gi is constant
on A ∈ [Y]a+1 we have that its range is equal to 0 on [Y]a+1.

Let now {z1 < . . . < za−1} the largest a − 1 elements of Y and set X = Y \
{z1, . . . , za−1}. We claim that this is the desired set X. Clearly we have that
|X| > b and Y ⊆ (s, c). So it suffices to show that X is min-homogeneous for every
fi. Let x1 < . . . < xa and x′1 < . . . < x′a be two a-sets in X with x1 = x′1. We have
that

fi(x1, x2, . . . , xa) = fi(x1, x3, . . . , xa, z1) = . . . = fi(x1, z1, . . . , za−1)

and similarly

fi(x
′
1, x
′
2, . . . , x

′
a) = fi(x

′
1, x
′
3, . . . , x

′
a, z1) = . . . = fi(x

′
1, z1, . . . , za−1).

Where the later are equal since x1 = x′1.
�

COMPUTABILITY III TOPICS IN COMPUTABILITY 45

LetM be a model of Peano arithmetic and let Φ be a set of formulas of the form
ϕ(x1, . . . , xk, y1, . . . , yn). A subset I of M is said to be a sequence of diagonal
indiscernibles for Φ if for every ϕ ∈ Φ and every a, b1, . . . , bn, c1, . . . , cn ∈ I with
a < b1 < · · · < bn and a < c1 < · · · < cn and any a1, . . . , ak < a we have that:

M |= ϕ(ā, b̄) ⇐⇒ M |= ϕ(ā, c̄).

The principle (?) above allows us to produce arbitrary long sequences of diagonal
indiscernibles with respect to any finite Φ in the standard model of arithmetic.

Lemma 60. For any k, l,m, n ∈ N and any set of formulas ϕ1(x1, . . . , xk, y1, . . . , yn),
. . . , ϕl(x1, . . . , xk, y1, . . . , yn) in the language of arithmetic, there is I ⊆ N of diago-
nal indiscernibles for {ϕ1, . . . , ϕl} with |I| ≥ m.

Proof. We may assume that m > 2n. We will find a large enough s ∈ N so within
[0, s] there will be a large set X with almost the property we need, namely, for every
b0 < b1 < . . . < bn < bn+1 < . . . < b2n ∈ X and any a1, . . . , ak < b0 we will have
M |= ϕi(ā, b0, . . . , bn) ⇐⇒ M |= ϕi(ā, bn+1, . . . , b2n) for all i ≤ l.

To motivate the definition of s consider the any such B = {b0, . . . , b2n} ⊆ [0, s] of
size 2n + 1. If the above property fails, then there is some witness to this failure,
i.e., some a1, . . . , ak < b0 and some i ∈ {1, . . . , l}. We can define therefore functions
f1, . . . , fk : [s]2n+1 → s and g : [s]2n+1 → {0, . . . , l} so that, if B fails the above
property f1(B) = a1,. . .,fk(B) = ak, g(B) = i is any witness to this failure and if B
satisfies the above property then f1(B) = . . . = fk(B) = g(B) = 0. Notice that the
functions f1, . . . , fk are regressive!

By the finite Ramsey theorem we have some w ∈ N so that w → (m + n)2n+1
l+1 .

By principle (?) we can then find s so that whenever f1, . . . , fk : [s]2n+1 → s are
regressive, there is Y ⊆ (w, s) with |Y | = w so that Y is min-homogeneous for all fj.
As a consequence, for the above defined f1, . . . , fn we find such a min-homogenous
set Y of size w. Since |Y | = w and w → (m+n)2n+1

l+1 we can restrict further to some
X ⊆ Y with |X| = m+ n so that the g defined above is constant on [X]2n+1.

Claim. g(B) = 0 and therefore f1(B) = · · · = fn(B) = 0 for all B ∈ [X]2n+1.
Proof. Assume that g(B) = i > 0. Notice that since m > 2n we can find a

sequence of length 3n+ 1 in X:

b0 < b1 < · · · < bn < bn+1 < · · · < b2n < b2n+1 < · · · < b3n.

Let ā = (f1(B), . . . , fk(B)) for any B[X]2n+1 with minB = b0. We then have that

ϕi(ā, b1, . . . , bn) 6↔ ϕi(ā, bn+1, . . . , b2n),

ϕi(ā, bn+1, . . . , b2n) 6↔ ϕi(ā, b2n+1, . . . , b3n), and

ϕi(ā, b1, . . . , bn) 6↔ ϕi(ā, b2n+1, . . . , b3n)

Contradiction: since at least two of the above ought to have the same truthvalue.
To finish with the proof we set d1 < . . . < dn to be the n many largest el-

ements of X and set I = X \ {d1, . . . , dn}. We have |I| = m and for every

46 ARISTOTELIS PANAGIOTOPOULOS

a, b1, . . . , bn, c1, . . . , cn ∈ I with a < b1 < · · · < bn and a < c1 < · · · < cn and
any a1, . . . , ak < a we have that:

M |= ϕ(ā, b̄) ⇐⇒ M |= ϕ(ā, d̄) ⇐⇒ M |= ϕ(ā, c̄).

Since a < b1 < · · · < bn < d1 < · · · < dn and a < c1 < · · · < cn < d1 < · · · < dn are
in X

�

One may use infinite sequences of diagonal indiscernibles to construct “inner mod-
els” of Peano arithmetic. Recall from HW that a ∆0-formula is a formula that is
built using only with bounded quantification.

Lemma 61. Let M be a model of Peano arithmetic and let b0 < b1 < · · · be an
infinite sequence of diagonal indiscernibles for all ∆0-formulas. Let N ⊆ M be the
set {a ∈M | ∃n a < bn} and let N . Then

(1) N is closed under addition and multiplication;
(2) N :=M�N is a model of Peano arithmetic.

Proof. Addition. Let b < b′ < b′′ < b′′′ be in the sequence of indiscernibles and
let a < b be any element. It suffice to show that a + b′ < b′′. If not then there is
some a′ < a so that a′+ b′ = b′′. But then, by diagonal indiscernibility we have that
a′ + b′ = b′′′ as well which contradicts that b′′ < b′′′.

Multiplication. Similar and we leave it as an exercise.
N models PA. This follows from the HW since the validity of an arbitrary

formula in N reduces to the validity of a ∆0-formula in M.
For example, consider the formula ϕ(x̄) ≡ ∃y1∀y2ψ(x̄, y1, y2) and let ā ∈ N . We

have aj < bi0 for some i0. Notice that N |= ϕ(ā) if and only if
“there is some bi1 > bi0 so that for all bi2 > bi1 we have N |= ∃y1∀y2(y1 <

bi1) ∧ (y2 < bi2) ∧ ψ(ā, y1, y2) ”
By HW this happens if and only if:
“there is some bi1 > bi0 so that for all bi2 > bi1 we have M |= ∃y1∀y2(y1 <

bi1) ∧ (y2 < bi2) ∧ ψ(ā, y1, y2) ”
and since the bi’s are diagonal indiscernibles this happens if and only if
“M |= ∃y1∀y2(y1 < bi0+1) ∧ (y2 < bi0+2) ∧ ψ(ā, y1, y2) ”
We leave it as an exercise now to show that all induction axioms hold in N . �

6.3. Conclusion.

Theorem 62. The Paris-Harrington principle is not provable in Peano Arithmetic.

Proof. By the previous subsection it suffice to show that (?) is not provable. Assume
it was. LetM be any non-standard model of PA and fix c any infinite element, i.e.,
any c ∈M \ N.

Going now back to the combinatorics of the proof of Lemma 60: set c = n = l
and m = 2c + 1 so that we have m > 2n. Since the finite Ramsey theorem is
provable in PA and since we assumed the same for (?) we can find a least w in M

COMPUTABILITY III TOPICS IN COMPUTABILITY 47

so that w → (3c + 1)2c+1
c+1 and then find the least s in M so that if f1, . . . , fc are

c-many regressive maps from [s]2c+1 → s, there is a Y ⊆ (c, s) of size |w| that is
min-homogeneous for each fj. The point here is that the formula which says F is
the the Gödel code for k-many regressive functions can be used for k = c.

Following now the proof of Lemma 60 we obtain an infinite set I ⊆ (c, s) with
|I| ≥ c of diagonal indiscernibles for the first c-many ∆0 formulas with variables
x1, . . . , xc and y1, . . . , yc in any fixed Gödel coding.

Let b0 < b1 < . . . < bn < . . . be an initial segment of I. Since every actual
∆0 formula is coded by some natural number in the standard part which is < c
we have that (bn) is a diagonal sequence of indiscernibles for all ∆0-formulas. Let
N = {a ∈ M | ∃n a < bn}. By previous lemma N :=M�N is a model of PA. To
finish the proof, it suffices to show that N does not satisfy (?). Notice that c ∈ N
while s 6∈ N .

Claim. The element w is in N .
Since finite Ramsey is provable in PA and c ∈ N we can find some w′ in N so

that w′ → (3c + 1)2c+1
c+1 in N . One checks now that because of the simplicity of the

statement “p is a code for all colorings...” every f : [w′]2c+1 → c + 1 that is coded
by an element of M is actually coded by an element of N , same for subsets of w′.
Therefore w′ → (3c + 1)2c+1

c+1 in M and by minimality of w we have that w ≤ w′,
i.e., w ∈ N .

Since (?) is assumed to be provable in PA then we should be able to find s′ in N
that in N performs the same function as s in M. By a similar argument and the
minimality of s we would get s′ ≥ s contradicting that all bn and therefore every
element of N is below s. �

Mathematics Department, Caltech, 1200 E. California Blvd, Pasadena, CA 91125
Email address: panagio@caltech.edu
URL: http://www.its.caltech.edu/~panagio/

